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Abstract In this article,
the analysis
regulatioen in

a technique is presented for
of discontinuous dynamical feedback
nonlinear systems. A PWM feedback
interconnection scheme, with a general duty ratio
function, is shown to be easily analyzable in terms of an
average model which captures the essential features of the
discontinuously feedback controlled system.

1. INTRODUCTION

Discontinuous feedback control of dynamical aystems has
been traditionally addressed under the assumption of statig
for memoryless) feedback (See Utkin [11, 2.
Variable Structure Syatems and other representatives of

Tsypkin

discontinuous control schemes, such. as Pulse-Width-
Modulation and Pulse Frequency Modulation schemes have been
restricted to classes of systems in which either optpﬁt,
output erxror,

or, state feedback signals are directly

pulsed, usually through a unity feedback loop, into the
controlled system. The mofe realistic and-general situvation,
within a discontinous feedback scheme, calls, for
dynamical feedback, or interconnection, of the plant and the

feedback

however,
subsystems constituted by state estimators,
controllers, sensors and actuators whose dynamics can not be

entirely neglected.

This article addresses, in full generality, the problem
of analyzing dynamical discontinously fadback nonlinear
controlled plants. The discontinucus feedback scheme is
assumed to be conaeituted by a dynamical feedback plant, of
nonlinear nature, and a controlled switch obeying a PWM type
of switching strategy with sufficiently high sampling rate,
It is found that the actual closed loop controlled responses
of the system exhibit sliding regimes on’' certain average
manifolds. These manifolds are inmmersed 1; the regions of
the composite state space where the duty ratio function is
not acting under saturation conditions. 1In fact,
sliding motions locally take place on integral manifolds of
a suitable average system described in the (augmented) state

such

space of the closed ioop system. The averagé system is
simply obtained by an infinite sampling frequency assumption
on the PWM process. This article constitutes an extension,
to nonstatic discontinuous feedback,

Sira-Ramirez (3]-(5].

of the work in
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VENEZUELA.

Section 2 PWM

interconnection

presents general results about

of dynamical systems in a feedback
arrangement. Section 3 is devoted to an illustrative example
of a discontinuous dynamical feedback scheme of a nonlinear
system which includes a nonlinear feedback observer. Section’
4 contains some conclusions and suggestions for further work
in the area. The necessary background on PWM control is
presented in the Appendix.

2. DEFINITIONS AND MAIN RESULTS

Consider the switched controlled interconnected system

shown in figure 1. Such system is described by:

dx/dt = f(x) + g(x)e,
y; = h(x)

L T SR ]

dz/dt =¢(z) + y(z)ay
¥z = N(2)

@ = Uy VY,

v = PWM [s(tk)]

a(t) = a[al(t)}uz(t)] (2.1)
where £, g, ¢andy are smooth vector fields, x and 2z are
smooth coordinate funétions of RM and RP respectively, the
functions h, M and s are smooth scalar functions of their
arguments and the scalar signals u; and u, are assumed to be
either external reference control inputs or external

disturbances. The PWM opérator is defined as

1 for ty ¢ t Sty +Tl8(ty)]T
PWM [s(ty)] = ' (2.2)
0 for ty +T[a(tk)]T ¢t S ty+T
where T is a fixed (i.e., constant). sampling interval
length, known as the duty cycle. andt[s(ty)] is a plecewise
Xnown as the duty ratio function which
takés values in the closed interval [0,1]. The duty ratio

smooth function,

function represents the fractional length of the sampling

interval in which the feedback interconnéction is enabled,
before it is sewitched off for the rest of the sampling
The 8 (ty)

s[el(tk),ez(tk)], for each ty. If during a certain open

interval. notation actually stands for

interval of time the duty ratio function exhibits either the
value 0 or 1, the PWM controller is said to be_saturated or
it is said to be acting under gaturation conditions.



The analysis of (2.1),(2.2) 1s extremely difficult if
one uses the discrete-time approximation scheme by which PWM
systems have been traditional analyzed. This 1s so, even in
the case of a linear dynamical plant interconnected to a
Csaki (6, pp.

591}). Rather than using this route, we resort to a recent

static feedback system (See, for instance,
averaging technique, proposed in [3]-[5], used for studying
nonlinear discontinuously controlled systems under static
feedback.

The essential features of this

(2.1}

(memoryless)

technique which are applicable to system are

summarized in the Appendix of this article.

Definition 2.1 We define the average system of (2.1) as the
following dynamical interconnected system:

dx/dt = f(x) + gix)e;
y; = hx)

e =¥t v

dz/dt ={(z) + y(z)e,
¥z = T(2)

e =uy -~ wy,

w = Tlalt)}

8(t) = ale;(t),e,(t)) (2.3)

The average system (2.3) e;:hibits exactly the same
structure as the original controlled system except for the
fact that the feedback enabling switch,
is substituted by the duty ratio function
t[s{ej,e3)]. It will be shown in the appendix that such a

represented by the

function v,

substitution process is justified by letting the sampling

frequency, of the pulse modulator, reach an arbitrarily

large rate. In other words, the average model (2.3) can be
obtained from the oriqi;lal system (2.1) by allowing an
infinite sampling frequency asumption on the PWM block. The
in the

advantage of the average model 1lies, precisely,

smooth character of the controlled
incidentally,

system in the saturation regions of the PWM operator and is,

response which,

entirely coincides with that of the real

moreover, aib\it‘rarily close to the response of the real
system in r.}}e nonsaturation regions. The nature of the
approximation, Sn such nonsaturation is
characterized by the existence of a sliding regime about the

average responses, or, more preceisely, by a sliding regime

occuring about integral manifolds of the average model.
Sira-Ramirez (3]-[5]).

regions,

(See

The following theorem constitutes an extension of the
main result presented in the Appendix .

Theorem 2.1 For identical initial conditions, the responses
' Qf system 2.1 entirely coincide with those of the average
system 2.3 in the'regions of the state space who;'re the duty
ratio function acts under satuyration conditions. On the
tegions of nonsaturation (i.e., where the ciuty ratio

(0,1)), the
responses of the actual PWM contlolled system exhibit a

function takes values in the open interval

i
sliding motion about integral manifolds, of the average

system 2.3, containing the initial condition prescribed fo:
(2.1,

Broof
system 2.1 in the augmented state space of coordinat«

The first part of the proof is obvious. cConside:

functions (x,2z).

. x £(x) g(x) 0 Juy
3 I ]- '
dat]| z #(z) + Y(2R(x) o ywo|lup
-g(x)n(z)
+ v
0
n h(x)
=
(2.4)
which we shall express as :
a/dt xg = £4(xg) + Gyga(Xg)ug + goglxg) v
Yo ™ hglxg) 2.5
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with Xq ™ col (x,2) and the vectors fields; f, 92a ¢ the
columns of Gyqs and the function hy are trivially defined
from the expression (2.4) of the closed loop system. The
{2.5) 18 of the (R.2)-(A.3), witl
discontinuous input function, v, governed by'tha PWN
(2.2).
applies and the result follows.

system same form

The result of theorem A.1 immediatel)

o]

operator

Remark Notice that in thé event of a prescribed constant
duty ratio function, 0 ¢ T¢<1, the sliding motion described
by theorem 2.1 occurs globally in the augmented state space
of the closed loop system, about integral manifolds of the
average model. This result should be clear since, in such a
case, the saturation condition is never reached for the

feedback switching device.
3. AN ILLUSTRATIVE EXAMPLE

Dynamic Discontinuous Feedback Control of a

Example
Flexible Joint Manipulator ( Albert and Spong [7) ).

Consider a single rigid link of mass M, whose length
from the center of rotation is .L, and inertia I . The link
is to act as a manipulator with flexible joint coupled to an
actuator motor characterized by inertia Jy about the axis of
rotation, and vicsous friction parameter B;. The flexibility
of the joint 1s modeled by means of a torslonal spring with
constant k, and a torsicnal damping with parameter B . The
mathematical model is given ' by the following set of
nonlinecar ordinary differential equations :

dxy/dt = xp, dxp/dt = - (MgL/Jy) sinxg=(By/Jy) Xyt (K/Tp) (x)-x3)
dxg/dt = x4, drg/dt.= - (B /3p)xg + (K/3y) (xy-x3) + (1/3)u

Y- x EY



wherae X, and x4 are the 1link and motor shaft angle
respectively and u represents the applied input torgue. In
spite of the nonlinear nature of the model, if the output of
the system is taken as the angular position x; of the link,
an asymptotically stable observer of the Luenberger type can
be prescribed for the system linear error dynamics (See

.

Such an asymptotic observer is given by

aky/dt = &y + gy (y-§)),
dfy/dt = -(MgL/Jp)siny =(By /)&y + (k/Jp) (§1-E3)+ gpty-§;)
dgy/dt = &, + g3y -§&)),
dby/dt = =(B/T & + (k/Tg) (E1-Ex) + (L/T)u + guly -§))
(3.2)

where the observer parameters g; / i = 1,...,4, are chosen
to place the poles of the linear time invariant error
dynamics in suitable locations of the left half of the
complex plane.

Resorting to exact feedback linearization results, a

nonlinear, static, feedback controller has also been

designed in (7], which globally stabilizes the nonlinear

controlled system, given by :

U o= (JIp/K) [~ag(Tq (§)~2)~agT,y (B) -apTa(E) -a T4 (8} ] + @)
(3.3)
where r =: eLd , 18 a desired angular position for the link
and :
Ty(§) =& ; To8) =&
T3€) = -(MgL/I ) sin & -Bp/Jp&y - (k/9p) (§;-E3)
T4(§) = (-MgL/Jp) §ycos(§)) -(B/I)Ty(8) - (k/Jp) (58
t
with: O(E) = T3(8) [(MgL/Jp)cosky + (Bp/dp)2-(k/3p)1 +

(MgL/3) Ey2sin &) + (B MgL/ T 2)Econ ) + (BLk/Ty %) (EpEy)

;

i
appropriately place the poles of the linearized controlled

The constants a; = 1,...,4 are chosen to
system in desired locations of the left half of the complex

plana,

In order to study the effect of a discontinuous PWM

feedback scheme on (3.1)-(3.3), we introduce a feedback

enabling switch - of constant duty ratio T - characterized

by the function v. In this case, the average system is
symply obtained from the actual switched-regulated system by
simply replacing the switch device by a constant gain of
In order to maintain the same quality of the
[71.

the

value T.
continuous feedback design achieved in and take such
the average responses,

parameters a; {1 =1,...,4) were scaled down by a factor

responses as controller

equal to the duty ratio t. In this manner, the overall gain
of the feedback path is unaffected for the average PWM
system with respect to the original design and the average
response of our PWM scheme should be identical with those
obtained in {7].
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We, haence, prescribe a discontinuous feedback

controller of the form :

U= (Ipdp/k) (- (v/T) [ag (Ty (§)-7) + 23T, (8) + ayT, (k) +
aT4(8)) 1 + ad)
(3.4)

1 for ty<tSt, +TT

0 elsewhere

The system parameter values found in [7] are alsc used
here,'with the same prescribed contrcller and observer gains
M~ 0.02, J, = 0.0004 Nms2/rad, Jy= 0.0004 Nms?/rad, By
0.015 Nms/rad, By = 0, k = 0.8 Nm/rad, g = 9.8065 m/az, L=

0.5m and xr = OLd = 1 rad.

Simulations were run with a constant duty ratic of t =
0.5 and a sampling frequency for the PWM block of 250
samples per second. Figure 2 shows that a sliding motion

actually appears about the average response of the
controlled system in the augmented state space. The figure
portrays the "jerk" variable, X4, directly beeing affected
by the discontinuous feedback signal. Such sliding mode is
not observad in the rest of the satate variables as the
discontinuous feedback signal travels, in its way to the
output, through the succesive integration steps representing
the dynamical system. In fact, on the response of the link
angular position of the system, the aliding motion,
exhibited by the actual PWM feedback controlled system, is
smoothed cut to the point of practically coinciding with the
This
smoothing phenomena, aside from the integration effects, is
due to the regular canonical atructure (9] exhibited by the
sliding
regimes are undergone by the variable in the last equation (
fast aliding variable) while the rest of the variables
behave as the smooth ideal sliding dynamics (slow sliding

variables).

response of the 'avaraqo system (See figure 3).

discontinuously controlled system. In such cases

4. CONCLUSIONS

An averaging technique has been introduced for the
accurate description of discontinous feedback interconnected
nonlinear systems under a pulse width modulation scheme for
the switching element. The averaging proces is based on an
infinite switching frequency assumption on the feedback
enabling device. The proposed average model was shown to
entirely capture the main qualitative, and quantitative,
featuraes of the actual finite frequency switched controlled
system. The existence of a sliding motion in the augmented
state space of the closed-loop pulsed-controlled asystem,
which closely follows the average trajectories, makes the
approximation scheme amenable to arbitrary improvement under
increased awitching frequency specifications for the actual
controlled system. This entirely obviates the need for

cumbersome approximation schemas, based on traditional



discrete-time considerations and the tachnical difficulties
aasociéted with the unbounded character of the PWM operator
{See Skoog and Blankenship [10]). Such sliding regimes occur
only on integral manifolds of the average system inmmersed
in regions of the state space where the duty ratio function,
exhibits a
nonsaturation condition. In the other regions of the state

associated to the controlled switch,

space, the trajectories of the actual and the average
sytstem just coincide. Several nontrivial illustrative
examples were presanted.
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APPENDIX

Let s(ty) denote s(x(ty)), a given scalar function of a

vector x. Consider, then, the nonlinear discontinuocusly

controlled system, described by:

£(x) + Gy(x)u + gz(x) for ty <t S tyt+ Tla(tyg)]T
dx/dt =
£(x) + Gy(x)u  for ty + Ts(ty)] T <t Sty + 7T

(A.1)

where the vector field f(x), the columns of Gy (x) and gz(x)
are smooth vector fields defined on RP, The ty's represent

regularly spaced instants of time where an ideal sampling

process takes place. At each of these instants, the value of

the duty . ratio function, Tls(x(ty))] = Tls(ty)), is
determined in correspondence with the value of the scalar
function =(x), at the sampled value of the state vector,
%(tx). The sampling period T 18 assumed to be sufficiently
small, as compared with the time constants associated with
the dynamics of the system. Unless otherwise stated, it
will be assumed that our considerations are restricted to a
region of the state space where the duty ratio function,

T(a(x})), is not saturated i.e., Tls(x)) takes values in the

open interval (0,1).
In terms of an ideal switching function v, taking
values in the discrete set {0,1}, the above system can be

equivalently represented as :

dx/dt = v[£(x) + Gy (x}u + gp(x) + (1-v)[f(x) + g1 (x)u]

i.e.,
dx/dt = £(x) + Gy(x)u + v gp(x) (A.2)
with v obeying a awitching policy of the form:
1 for ty <t Sty +Tls(ty)] T
v (A.3)‘
0 for ty + Tlalty)) T<t<ty+7T

The following lemma is a straightforward consequence of

the Fundamental Theorem of Calculus.

Lemma A.1 Let f be a smooth vector field and let Ig(t) :=
fo"- f(x(s))ds. Then for any smooth, strictly positive,

function p(x):

EL o>t (T Ctysml2 (8 ) 1T -T, (£, )} /T

=p[x(t))£(x(t))

(A.4)
-The next theorem determines the nature of the
infinte-frequency average dynamics of (A.2), (A.3) under

nonsaturating conditions.

ZTheorem A,1 Consider a region where the PWM controller is
not saturated. Then, as the sampling frequency 1/T tends to

infinity in system (A.2), (A.3),

(A.1) coincides with Eilippov's average model .

the discontinuous system

dx/dt = pix) [£{x)+G1(x)u + ga(x)]+ [1-p(x)) {f(x) + Gy (x)u)

= £(x) + Gy(x)u + u(x) go(x) = fay(x,u) (A.5)

with a corresponding convex combination function, Bix),

exactly represented by the duty ratio function T(x).

Moreover, in such a region, a sliding regime is exhibited by

the actual PWM controlled system (A.2), (A.3) about an

integral manifold M of (A.5).
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Proof Let £1 (x,u) = £(x) + Gy(x)u + gz(x) and fz(x,u) -
£(x}) + Gy(x)u, and, as before, let s(ty) denote s{x(tyl}.
From (A.2), (A.3), the state x at time ty + T is exactly

computed as:

Yt tla(ty )T
x(teTr= x(ti)+ f, (21T (xior.uienas
k
ty+T

”"k" 1[’('*)”, £,(x({c) .u(s))do

[ErtTstes)lT
t

= x(t)) + £, (x(0), u (0) ds +
t 4T ty #T [s(tk)]T ’
[ 7 £ (o), vl do- | £, (x(0), u (0)) dO
tk 2 ty 2

assuming that 7T(s(x)) is neither 0 or 1 in the region of

interest, and wusing the result of lemna A.l, one has :

1lim

T->0, t) ->t [ 2 (tx+T) - x(ty) 1/T

trttls eyl

- Lim £1(x(0), u(0)) do +

T->0, ty->t tk

t 4T t s, )T
[k fz(x(m,utd))dc-ltk k

£ &x(6),u(@ide 1 (1/T)
ty 2

k

= T(s(t)) f1({x(t)) + [1-T(s(t))] f3(x(t))

or:

dx/dt = T(s(x)) £3(x) + [1-T[s(x)]] f3(x) =

= £(x) + G (x)u + T(x) ga(x) = fa,(x,1) (A.6)
i.e., the infinite frequency model of (A.2)~(A.3) coincides
with Filippov's Geometric Average model in which the convex

combination function M{x), defining the average vector field

fay(x), is precisely taken as the duty ratio function

T[s(x)]. It is clear that on an integral manifold of (A.6),

described by, say, S = { x€ RP :
(A.6)
gradient of m(x) i.e :

m(x}) = 0 }, the controlled

vector ' field of is pointwise orthogonal to the

(Om/3%) [ £{x)+G1 (x)u + T(X) gy(x})] = 0 on ma=0 (A.T)
the duty ratio function admitta, then, a geometrically based
definition as :

T(x) = - (Im/3x) [£(x) + Gy {x)u ]/(3m/dx) gy (x) (A.8)

From known results about the relation between
Filippov's average dynamics and sliding regimes (1], and the
assumption that the duty ratio function is locally bounded
in the open interval (0,1), it follows that a gliding regime
exists locally on the manifold S for the VSS (A.2), (A.3).
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The equivalent control vEQ(x), associated with such a
sliding regime, is simply obtained from the jinvariance
conditiong [1],[8] of the

on the integral manifold S = { X :

1deal sliding mode taking place

m(x) = 0 } of the average
i.e. dm/dt = 0 onm = 0

system : from the conditions:

.

written in local coordinates, one obtains:

dm/det = 3m/ax[ VER(x) £ (x,u) + (1-vEQx)) f£p(x,u) )
= vBQ(x) [am/3x) £1(x,u) + (1-vEQ(x)) (am/3x] tp(x,u) = O

The corresponding equivalent control vEQ(x) is then obtained
as

vEQ(x) = - [3m/3x) £ (x,u) /[ Am/Ax] (£ (%, u)~£3 (x,u))

i.e.,

vEQ(x) = [3m/3x] (£(x) + Gy (x)u)/(am/dx]gy (x) (A.9)

It follows, from (A.8)-(A.9)

equivalent control [8), that :

and the uniqueness of the

vEQ(x) = T(x) (A.10)

i.e., the equivalent control of the sliding motion
(A.2) {A.3) 1is then,
constituted by the duty ratic associated to the proposed PWM
control scheme. The corresponding ideal sliding dynamics is

associated with and precisely,

then represented by :

dx/dt = vEQ(x) £1(x,u) + [1-vEQ(x) | f,(x,u)

= T(x)£1{x,u) + [1-T(x)] fa(x,u) = £{x)+ Gy (x}u + g(x} T(x)

which is just the Average PWM model (A.6).

It was showh in [8] that the region of existence of a
sliding motion is determined by the region on S where
T[s(x)) satisfies the following conditions:
<

0 < T(a(x)] = vEQ(x) 1

the above condition is-
in all

By definition of the duty ratio,

evidently satisfied, along the integral manifold S,

regions of the state space where the PWM controller is not

o

saturated.
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