SLIDING REGIMES IN PULSE-WIDTH-MODULATION SYSTEMS DESIGN Hebertt Sira-Ramirez Departamento Sistemas de Control Escuela de Ingeniería de Sistemas.Universidad de Los Andes. Mérida, VENEZUELA Abstract. In this article a design method is proposed for the specification of a variety of Pulse-Width-Modulation (PWM) feedback controllers acting on plants described by Nonlinear Dynamical Systems. It is first shown that an average model of the PWM controlled system, derived by an infinite sampling frequency assumption, is simply obtained by replacing the discontinuous control by a memoryless nonlinearity completely specified by the feedback duty ratio function. The average model captures the essential qualitative stability properties of the controlled system and, thus, can be used to considerably simplify the PWM controller design task. The case of PWM regulators for linear plants can be, thus, systematically treated by traditional input-output design methods. Some examples are provided. #### 1. INTRODUCTION PWM control have been extensively used and studied in the past. Fundamental work in the area was carried out by many authors (See references in Sira-Ramirez [1]). For background purposes we refer to the work of Skoog and Blankenship [2], a recent article by La Cava et al. [3] and Czaki's book ([4, p.591]). Due to the inherent sampling process associated to every PWM control scheme, the underlying feature of most works published in this area is the exploitation of the discrete-time aspects of the problem. The approach, however, also leds to tortuous calculations where the essential simplicity of the PWM scheme is hoplessly lost in analytical considerations pursuing an approximation scheme that obscures the essential aspects of the average control action. A different design approach has been proposed in [5]-[7] by Sira-Ramirez. By using the geometric properties of average PWM controlled responses (obtained by an infinite frequency sampling assumption on the original controlled system) the PWM control design can be carried on the basis of exact considerations about the average plant. The actual PWM responses were shown to exhibit real sliding motions, arbitrarily closely approximating the average designed behavior. Applications of these results to the control of DC to DC power converters are found in Sira-Ramirez [8], Sira-Ramirez and Ilic-Spong [9]. An interesting class of discontinuously controlled systems is represented by those in which the control variable takes values in the discrete set {-1,0,+1} ([2]). Typically, gas reaction jets controlling reorientation, or detumbling, maneuvers in artificial satellites are expressible as systems of this class. Torque actuators, used for control of joint poistions in robotic manipulators are also systems of this type. The control action, in this case, is said to be of the ON-OFF-ON type. In this article, we use an extention of the results in Sira-Ramirez [1],[7], to include general nonlinear PWM controlled systems of the ON-OFF-ON type, and then we particularize the results to several PWM schemes. As a design method, we propose to carry out the PWM controller specification (duty ratio function) on the basis of the corresponding features of the static nonlinearity producing a desirable performance of the average PWM controlled system. The required PWM sampling frequency may be then obtained in accordance with the degree of similarity one would like to impose on the actual PWM closed loop performance with respect to that of the average designed responses. The average PWM model is obtained by replacing the PWM regulator by means of a nonlinear memoryless controller totally specified by the particular form of the feedback duty ratio function. The average model is then used for design purposes and the required features of the nonlinearity are determined. This design scheme has been shown to be valid even in the case of dealy-differential plants controlled by a PWM loop (See Sira-Ramirez [10]). For the case of linear controlled plants, a vast amount of input-output design methods are readily available for PWM controller specification: Small Gain Theorem, Circle Criterion, describing functions, Nyquist stability criterion. Popov criterion, etc. The technical problems associated with the unbounded character of the PWM operator and the need for introducing low pass multipliers cascading the PWM controller (See [2]) are entirely circumvented with our proposed analysis and design technique. In Section 2 general considerations are presented about PWM controlled systems. Under an infinte frequency sampling assumption on the error signal, qn average model is derived which substitutes the PWM controller block by a memoryless characteristic function related to the duty ratio function. A family of PWM controller schemes is introduced in that section. The design procedure is also outlined in section 2. Examples are furnished in Section 3. Section 4 contains the conclusions and suggestions for futher work in the ## 2. DEFINITIONS AND BASIC RESULTS # 2.1 An Average model for PWM controlled plants. Consider a nonlinear feedback PWM controlled system described in \mathbb{R}^n , by : $$dx/dt = f(x) + g(x)u$$ $$y = h(x)$$ $$e = y_d(t) - y$$ $$u = M PWM_T [e(t_k)]$$ (2.1) with f and g smooth vector fields and h a smooth scalar output function. The control input u is a discontinuous scalar control function obtained as the output of a Pulse-Width-Modulator excited by the error signal e. The sampling process is assumed to take place at regularly spaced time instants, tk, This research was supported by the Consejo de Desarrollo Científico Humanístico y Tecnológico of the Universidad de Los Andes under Research Grant I-280-87. with a constant frequency of value 1/T, i.e., $t_{k+1} = t_k + T$. M is a constant gain. The PWM control operator, $PWM_{\overline{\chi}}$ [e], is usually characterized by (See [2]): PWM $\tau[e(t_k)] =$ $$\begin{cases} sign[e(t_k)] & \text{for } t_k \le t < t_k + t[e(t_k)]T \\ 0 & \text{elsewhere.} \end{cases}$$ (2.2) where $T[e(t_k)]$ is known as the <u>duty ratio</u> function, assumed to be a piecewise smooth function of <u>even</u> nature (i.e., $T[e(t_k)] = T[-e(t_k)]$). We denote the piecewise smooth function $T[e(t_k)]$ sign $[e(t_k)]$ by $N(e(t_k))$. N(e) is evidently an odd function (i.e., N(e) = -N(-e)). <u>Proposition 2.1</u> As the sampling frequency F:=1/T tends to infinity, the description of the nonlinear controlled system (2.1)-(2.2) coincides with: $$dx/dt = f(x) + g(x)v$$ $y = h(x)$ $e = y_d(t) - y$ (2.3) $v = M N(e(t))$ System (2.3) will be henceforth addressed as the average PWM controlled system while (2.1)-(2.2) will be addressed as the actual PWM controlled system. <u>Proof.</u> Let $I_{\varphi}(t)$ denote the vector-valued function $\int_{0}^{t} \varphi(x(\sigma)) \, d\sigma$, with $\varphi(x)$ being a given smooth vector field on \mathbb{R}^{n} defining the flow of $dx/dt = \varphi(x)$. Notice that, from the fundamental theorem of calculus, the following limit is readily obtained: $\lim_{T\to 0} \left[I_{\varphi}(t+\alpha T)-I_{\varphi}(t)\right]/T = \alpha$, i.e, $dI_{\varphi}(t)/dt = \alpha \varphi(x(t))$. The sampled stateresponse of the nonlinear feedback system (2.1) can be written, in terms of an equivalent integral equation, as: $$\begin{split} & \times (t_k + T) = \times (t_k) + I_f(t_k + T) - I_f(t_k) \\ & + M \left[I_g(t_k + T[e(t_k)]T) - I_g(t_k) \right] \text{sign } [e(t_k)] \end{split}$$ Therefore, according to the above expression, the following limiting procedure is entirely valid: $$\lim_{T\to 0, t} T^{-1}[x(t_k+T) - x(t_k)] =: dx(t)/dt$$ = $$\lim_{T\to 0, t} \int_{->t}^{-1} [I_f(t_k+T) - I_f(t_k)] + \lim_{T\to 0, t} \int_{->t}^{-1} \{I_g(t_k+T) - I_f(t_k)\} + I_g(t_k)]$$ $sign[e(t_k)]$ = $$f(x(t)) + g(x(t)) M T[e(t)] sign [e(t)]$$ = $$f(x(t)) + g(x(t)) M N[e(t)] = f(x) + g(x)v$$ Remark The behavior of the infinite frequency sampled system is described by the original nonlinear plant fed back via a <u>nonlinear piece-wise smooth</u> block N(e), excited by the error signal e. The scalar input u is generated as the output of the memoryless nonlinear function N(e). In other words, to evaluate the <u>average behavior</u> of the PWM controlled system, the PWM controller block is simply substituted by a nonlinear memoryless characteristic totally specified by the duty ratio function (See Figures 1 and 2). As the sampling frequency grows to infinity, the average and the actual PWM responses tend to coincide. Thus a large sampling frequency can always be specified which keeps the actual PWM closed loop response of (2.1)-(2.2) within a prespecified bound defined about the corresponding average response of (2.3). The qualitative stability characteristics of the PWM controlled system (2.1)-(2.2) have been shown to be captured by its infinite-frequency sampling average model (2.3) (See [1]). In particular, a necessary condition for asymptotic stability towards the e = 0 manifold of the actual PWM system is constituted by the asymptotic stability of the average model towards such a manifold. It was also established in [1], that if the response of the average model (2.3) is asymptotically stable towards the e = 0 manifold, then the actual PWM controlled response can be made to follow, arbitrarily close, the response of the average model by suitably increasing of the sampling frequency of the PWM controller. Thus, modulo sufficiently large -but finite- sampling frequency, the following theorem holds true: Theorem 2.2 The trajectories of the closed loop PWM controlled system (2.1)-(2.2) are asymptotically stable towards the e = 0 manifold if and only if the trajectories of the average PWM controlled system (2.3) are asymptotically stable towards such a manifold. <u>Proof</u> (See [1]). #### 2.2 A Family of PWM Controllers A PWM controller is completely determined by the duty ratio function, T(e), and by the sampling frequency 1/T. Unless the duty ratio is held to be a constant, as it is quite commonly the case in switch-regulated power electronics devices (See [8], [9]), then the duty ratio may actually be considered as a feedback function. The nature of such feedback is one based in administering the length of intersampling time on which one of two available control actions, -1 and +1, are enabled to affect the system, while the rest of the sampling period the control action is switched off (to zero input). In general, the available control actions are of fixed nature and of oposite signs but they could also be amplitude modulated by the error or the state signals. Here we propose several PWM control configurations which lead to well known nonlinearities for the average PWM block N(e). Some of them, particularly the one leading to a saturation nonlinearity has been extensively studied in refs. [1],[2] and [10]. The rest of the schemes here presented were also proposed in [11]. ### Saturation PWM controller This controller is defined by the following even duty ratio function. $$\tau[e(t_k)] = \begin{cases} \beta|e(t_k)| & \text{for } |e(t_k)| \le 1/\beta \\ \\ 1 & \text{for } |e(t_k)| \to 1/\beta \end{cases}$$ (2.4) Evidently, the average block substituting a PWM controller characterized by (2.2) and (2.4) is given by N(e) = T[e(t)] sign[e(t)] = sat[e(t)], i.e., it is given by the <u>saturation function</u> of the error signal e(t). The gain of the saturation function is easily shown to coincide with the parameter β of the PWM controller. The nature of the actual PWM controlled response with respect to the average response in a feedback scheme using a saturation PWM controller is such that -under the same initial conditions- the state responses coincide in the saturation region $|e(t)|>1/\beta$. In the boundary layer region, $|e(t_{\chi})|\leq 1/\beta$, the actual state responses slide about integral manifolds of the average system (See [7]). #### Relay PWM Controller A duty ratio that remains <u>constant</u> regardless of the value of the error signal, evidently excercises a periodic bang-off-bang action on the controlled plant. Evidently the constant value characterizing the duty ratio function must be smaller than one. $$T[e(t_k)] = K \quad (0 < K < 1) \quad (2.5)$$ The average block substituting a PWM controller characterized by (2.2) and (2.5) is given by N(e) = T[e(t)] sign[e(t)] = K sign[e(t)], i.e., it is given by the <u>ideal relay function</u> of the error signal e(t). It is quite easy to show that the gain of the relay function is infinte. The actual PWM controlled response exhibits, for sufficiently large sampling frequency, a sliding regime about the integral manifolds of the average system on each side of the e = 0 manifold. i.e., on e < 0 the actual state response slides about integral manifolds of dx/dt = f(x) - Kg(x), and for e > 0 the actual state response slides about integral manifolds of dx/dt = f(x) + Kg(x). The actual response will eventually slide about e = 0, if such a zero error manifold is locally or globally attractive. ### Dead-band PWM Controller This controller is defined by the following even duty ratio function. $$\tau[e(t_k)] = \begin{cases} 0 & \text{for } |e(t_k)| \le 1/\delta \\ \\ 1 & \text{for } |e(t_k)| \to 1/\delta \end{cases}$$ (2.6) The average block substituting a PWM controller characterized by (2.2) and (2.6) is given by N(e) = T[e(t)] sign[e(t)] = dbd[e(t)], i.e., it is given by the dead-band function of the error signal e(t). The gain of the dead-band function is easily shown to coincide with the parameter $\pmb{\delta}$ of the PWM controller. It is easy to see that, under identical initial conditions, the state responses of the actual dead-band PWM controlled system totally coincide with those of the average PWM controlled model. Sliding motions occur either on the e = 1/ δ or e = -1/ δ manifolds in the state space. # Saturation with Dead-Band PWM Controller This controller is defined by the following duty ratio function (δ > β) : $$\tau[e(t_k)] = \begin{cases} 0 & \text{for } |e(t_k)| \le 1/\delta & (2.7) \\ 1 & \text{for } |e(t_k)| \to 1/\beta \\ \beta \delta[e(t_k)-1/\delta]/(\delta-\beta) & \text{for } 1/\delta < |e(t_k)| \le 1/\beta \end{cases}$$ The average block substituting a PWM controller characterized by (2.2) and (2.6) is given by N(e) = T[e(t)] sign[e(t)] = sdbd[e(t)], i.e., it is given by the <u>saturation function with dead-band</u> of the error signal e(t). The gain of the saturation function with dead-band is easily shown to coincide with the parameter β of the PWM controller. It should be clear that the actual state responses of the PWM controlled sytem coincide with those of the average PWM model under saturation conditions. On the linear portions of the duty ratio characteristic, the actual response slides about integral manifolds of the corresponding average PWM model. The responses on the dead band zone of both systems coincide if initial conditions are taken to be the same. In this zone, the responses locally evolve on the integral manifolds of the uncontrolled system dx/dt = f(x) which contain the family of initial conditions. # Negative Deficiency Saturation PWM Controller This controller is defined by the following even duty ratio function. $$\tau[e(t_k)] = \begin{cases} K + K_N \mid e(t_k) \mid \text{ for } \mid e(t_k) \mid < 1/\beta \\ \\ 1 \quad \text{ for } \mid e(t_k) \mid \ge 1/\beta \end{cases}$$ (2.8) Notice that the parameters defining this duty ratio function are related by $K_N/(1-K)=\beta$. The average block substituting a PWM controller characterized by (2.2) and (2.7) is given by N(e) = T[e(t)]sign[e(t)] = ndefs[e(t)], i.e., it is given by the negative deficiency saturation function of the error signal e(t). As in the case of the ideal realy, the gain of the negative deficiency function is infinte. As before, under saturation conditions the actual and the average PWM responses totally coincide. In the linear regions the integral manifolds of the average model, on each side of the e=0 manifold, qualify as sliding surfaces where the actual PWM controlled state responses evolve. ### Granularity PWM Controller This PWM controller is defined by the following duty ratio function. $(\Delta K = 1/n)$ $\tau[e(t_k)] =$ $$\begin{cases} 0 & \text{for } |e(t_k)| \leq \Delta \beta/2 \\ \Delta \kappa & \text{for } \Delta \beta/2 < |e(t_k)| \leq 3\Delta \beta/2 \\ 2\Delta \kappa & \text{for } 3\Delta \beta/2 < |e(t_k)| \leq 5\Delta \beta/2 \\ & \dots \\ (n-1)\Delta \kappa & \text{for } (2n-3)\Delta \beta/2 < |e(t_k)| \leq (2n-1)\Delta \beta/2 \\ 1 & \text{for } |e(t_k)| \Rightarrow (2n-1)\Delta \beta/2 \end{cases}$$ The average block substituting a PWM controller characterized by (2.2) and (2.9) is given by N(e) = T[e(t)] sign[e(t)] = gr[e(t)], i.e., it is given by the granularity function of the error signal e(t). The gain of the granularity function coincides with the ratio: $2\beta/\Delta\,\kappa$ of the PWM controller parameters. The actual PWM responses exhibit sliding regimes about integral manifolds of the average system $dx/dt=f(x)+i\Delta K\ g(x)$ for each i ($i=1,2,\dots n-1).$ i.e., sliding modes exist for those regions of the sate space where the duty ratio function is neither saturated nor zero. The actual state trajectories jump from leave to leave of the discrete folliation induced by integral manifolds of the average system system $dx/dt=f(x)+i\Delta Kg(x)$ For i=0, or i=n, the average and actual PWM responses coincide under identical initial conditions. #### 2.3 Linear Controlled Plants For the case of linear controlled plants, a vast amount of input-output design methods can be $\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2$ directly used for PWM controller design based on the average PWM model. The design problem for a particular member of the family of described PWM controllers is reduced to finding the stabilizing gain corresponding to the nonlinear block in the classical feedback configuration shown in Figure 3. By determining this gain, the defining parameter of the average PWM block is uniquely determined in most cases (granularity and other infinite gain cases excluded). These parameters completely define, in turn, the actual stabilizing PWM controller. Among the available methods to solve such a design problem one finds, in general: the Small Gain Theorem, the Circle Criterion, Describing Function methods, Nyquist stability criterion, the Popov criterion (especially for linear plants including delays), etc. All these design techniques, readily found in the literature (See MacFarlane [12]), are based on well-known sufficient conditions for stability and asymptotic stability of linear feedback controlled plants. The sampling frequency required to arbitrarily closely approximate the actual PWM responses to those of the designed average PWM model pretty much depends on the difference one is willing to tollerate among two such responses. ## 3. EXAMPLES Example 3.1 Let G(s) be the rational transfer function characterizing a causal linear time-invariant plant. It is easy to see, according to the circle cirterion, that if G(s) is positive real (i.e., G(s) is analytic in Re(s) > 0, the Nyquist plot of G(s) lies in the closed right half of the complex plane and those poles of G(s) on the imaginary axis are simple and have a nonnegative residue) or strictly positive real (i.e., G(s-E)is positive real for some positive $\boldsymbol{\epsilon}$), then any PWM controller, of the type described in Section 2, will always stabilize such a plant. This positive real requirement, incidentally, is shared by variable structure systems (in plants controlled by a relay function) where the relay is seen as an infinite-gain limit of an average saturation PWM controlled system. Example 3.2. Consider the problem of designing a stabilizing PWM controller of the <u>saturation type</u> for a distributed linear plant described by: $$G(s) = e^{-Ts}(s+p)^{-1}$$; $p > 0$ Let g_{ay} (PWM) denote the gain of the average PWM controller. Then, g_{av} (PWM) = $\sup_{e \neq 0} |\operatorname{sat}(e)| |e|^{-1} = \beta$. The Small Gain theorem (Zames [13]-[14]) leads to the following sufficient condition for asymptotic stability: $$g_{av}(PWM).sup_{w} + e^{-Tjw}(p+jw)^{-1} = \beta p^{-1} < 1 \Rightarrow \beta < p$$ One may, instead, use a particularization of the Circle Criterion (Sandberg [15]) for the design case of the saturation controller. This criterion leads to: inf w Re [$$e^{-jwT}(p+jw)^{-1}$$] > $-\beta^{-1}$ If for the above plant, a stabilizing design was required for a PWM controller characterized by a constant duty ratio of value 0 < K < 1, neither the small gain theorem nor the particularization of Sandberg's criterion are conclusive in assessing the stability features of the closed loop average PWM system. This is due to the infinite gain associated to the relay characteristic, the non-minimum phase character of the delayed plant transfer function and the sufficiency of the referred criteria. Example 3.3. Consider the kinematic and dynamic model of a single-axis externally controlled spacecraft whose orientation is given in terms of the Cayley-Rodrigues representation of the attitude parameter, denoted by ξ (See Dwyer and Sira- Ramirez [16]) . The angular velocity is represented by 00 while I stands for the moment of inertia and τ is the applied external torque, restricted by $\tau \in \{-\tau_{max}, 0, \tau_{max}\}$. $$d\xi/dt = 0.5(1+\xi^2)\omega$$; $d\omega/dt = \tau/I$ (3.1) Given arbitrary initial conditions, a slewing maneuver is required which brings the attitude parameter to a final desired value ξ_d and the angular velocity to a rest equilibrium. For feedback purposes a nonlinear output of the following form is made available : $$y = \omega - 2\lambda(\xi + \xi_d) / (1 + \xi^2)$$ (3.2) with $\lambda<0$. Notice that if the output function is ideally driven to zero in finite time and the controlled state trajectory is ideally made to stay in such a manifold y=0, then $\omega=2\lambda(\xi-\xi_d)/(1+\xi^2)$ and the equation governing the attitude parameter ideally becomes linear and of the form : $d\xi/dt=\lambda(\xi-\xi_d)$. The controlled trajectories thus asymptotically converge to $\xi=\xi_d$ with exponential decay rate set by λ while, simultaneously, ω would tend to zero as desired. Without loss of generality we may assume that $\xi_d=0$. A PWM controller, with constant duty ratio, k, leads to an average model represented by a nonlinear controlled plant fedback by an ideal relay and a constant gain block of value M=k T_{max} preceeding the ideal relay. A sliding regime has been shown to globally exist about the zero error manifold y=0 leading to the prescribed asymptotically stable ideal sliding dynamics (See [161) described above. A PWM controller of the saturation type can also be proposed to regulate the motions towards the vicinity of the zero error manifold and approximately obtain the desired linear stable dynamics (see [1]). The average PWM model for the saturation PWM controller, is governed by a nonlinear saturation type of nonlinearity with saturation values \pm 1 and a linear gain of value β . In accordance to model (2.3), in this case, the gain M takes the value M = βT_{max} . Using a Lyapunov stability analysis, it is relatively straightforward to show that the average model trajectories of the saturation PWM controlled plant may be made to asymptotically evolve towards the stabilizing and linearizing surface y = 0. A dead-band controller is quite common in gas reaction control schemes governing satellite maneuvers. This fact motivates the use of a dead band PWM controller, of the type described in the preceding section, for the above nonlinear plant. Simulated state responses of the actual deadband PWM controlled system (which actually coincides entirely with the average PWM responses) are shown in Figure 4. For this simulation, the following values were used I = 94 kg-m², λ = -0.11 s⁻¹, τ_{max} = 1.55 kg m²/s², ξ_d = 0, δ = 50. #### 4. CONCLUSIONS AND SUGGESTIONS FOR RESEARCH In this article a design procedure has been proposed for the specification of stabilizing feedback PWM controllers. It was shown that, under an infinite sampling frequency assumption, an average model is obtained, for every member of a family of PWM ON-OFF-ON controllers, by simply replacing the discontinuous PWM controller by a memoryless type of characteristic. This average model captures the basic qualitative (i.e. stability) features of the actual PWM controlled system. This allows to approach the PWM design problem in a more exact fashion, without need of discrete-time approximations. In the case of nonlinear plants one may resort, for instance, to well known Lyapunov design techniques. At the same time, one totally circumvents the technical difficulties associated to the fact that PWM operators are indeed unbounded operators on the Banach space of absolutely integrable functions. For the particular case of linear controlled plants, classical design techniques based on well-known sufficient conditions for asymptotic satability, are made available for PWM controller specification. The results were applied, through simple design examples, to PWM controller specification for linear and nonlinear plants. The results here presented can be easily extended to the case of multivariable PWM controllers. # REFERENCES - [1] H. Sira-Ramirez, "Nonlinear Pulse Width Modulation Controller Design," in Variable Structure Control for Robotics and Aerospace Applications. K.K.David Young (Ed.). Elsevier Science Publishers. Amsterdam. (to appear) - [2] R.A. Skoog and G.L. Blankenship, "Generalized Pulse-Modulated Feedback Systems: Norms, Gains, Lipschitz Constants, and Stability," IEEE Transactions on Automatic Control, Vol. AC-15, No. 3, pp. 300-315, June 1970. - [3] M. La Cava, G. Paletta and C. Picardi, "Stability Analysis of PWM Feedback Control Systems with PID Regulators," *International Journal of Control*, Vol. 39, No. 5, pp. 987-1005. May 1984 - [4] F. Czaki, Modern Control Theories, Akademia Kiadó, Budapest 1972. - [5] H. Sira-Ramirez, "A Geometric Approach to Pulse-Width-Modulated Control Design," *Proc. 26th IEEE Conference on Decision and Control*, Vol 3, pp. 1771-1776. Los Angeles, California, December 1987. - [6] H. Sira-Ramirez, "Sliding Mode Control on Slow Manifolds of DC-to-DC Power Converters," Int. Journal of Control, Vol. 47, No. 5, pp. 1323-1340. May 1988 - [7] H. Sira-Ramirez, " A Geometric Approach to Pulse-Width-Modulated Control in Nonlinear Dynamical Systems," *IEEE Transactions on Automatic Control* Vol. AC-34, No. 2, pp. 184-187, February 1989. - [8] H. Sira-Ramirez, "Sliding Motions in Bilinear Switched Networks," *IEEE Transactions on Circuits* and Systems. Vol. CAS-34, No. 8, pp. 919-933. August 1987. - [9] H. Sira-Ramirez, and M. Ilic " A Geometric Approach to the Feedback Control of Switchmode DC-to-DC Power Supplies," *IEEE Transactions on Circuits and Systems*, Vol. CAS-35, No. 10, pp. 1291-1298. October 1989. - [10] H.Sira-Ramirez, "Pulse-Width-Modulation Controller Design for Nonlinear Delay Differential Systems," Proc. Allerton Conference on Communications, Control and Computing. University of Illinois. Monticello. September 28-30, 1988. - [11] H. Sira-Ramirez, "On The Design of Nonlinear Pulse-Width-Modulation Controllers," in *Proc. of the IEEE International Conference on Control and Applications* (ICCON'89). WA4-2. Jerusalem, April 3-6, 1989. - [12] A.G.J. MacFarlane (Ed.) Frequency Response Methods in Control Systems IEEE Press. New York 1979. - [13] G. Zames, "On the Input-Output Stability of Time Varying nonlinear Feedback systems -Pt I: Conditions derived using concepts of loop gain, conicity, and positivity," IEEE Transactions on Automatic Control, vol. AC-11, pp. 228-238, April 1866 - [14] G. Zames, "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems Pt. II: Conditions involving Circles in the Frequency Plane and Sector Nonlinarities," *IEEE Transactions on Automatic Control*, vol. AC-11, pp. 465-476, July 1966. - [15] I.W. Sandberg, "Some Results on the Theory of Physical Systems Governed by Nonlinear Functional Equations," Bell Syst. Tech., J., Vol 44, pp. 671-898, May 1965. - [16] T.A.W. Dwyer III and H. Sira-Ramirez, "Variable Structure Control of Spacecraft Attitude Maneuvers," AIAA Journal of Guidance, Navigation and Control. Vol. 11, No. 3, pp. 262-270. May-June 1988. # FIGURES Figure 1. Nonlinear PWM controlled system Figure 2. Average Model of PWM Controlled System Figure 3. Average Model of Linear Plant Controlled by Pulse-Width-Modulation Figure 4. State trajectory response of average and actual dead-band PWM Controlled Spacecraft Model Acknowledgment The author is indebted to the National Council for Science and Technology (CONICIT) for making possible the presentation of this article at the Conference.