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Abstract In this article a design method is
proposed for the specification of a variety of
‘Pulse-Width-Modulation (PWM) feedback .controllers
acting on plants described by Nonlinear Dynamical
Systems. It is shown that an average model of the
PWM controlled system, derived by an infinte
sanpling frequency assumption, is simply obtained
by replacing the discontinuous PWM controller by a
memoryless nonlineariy completely specified by the
feedback duty ratio function. The average model
captures the essential qualitative stability
properties of the controlled system and, thus, can
be used to considerably simplify the PWM controller
design task. The case of PWM regulators for lineay
plants can be systematically treated by traditional
input-output design methods Some examples are
prdvided.

L. INTR.ODUCTION

PWM controllers have been extensively used and
studied in the past. Fundamental work in the area
was carried out by many aythors (See references in
Sira-Ramirezl ). For background purposes we shall
only ‘mention the work of Skoog and Blankenship?, a
recent article by La Cava et al.3 and P. 591 of
Czaki's book (ref. 4)., The underlying feature of
all the works in the area is the exploitation of
the discrete-time aspects of PWM schemes. Such an
approach ‘fits ‘the problem quite naturally, due to
the inherent sampling process associated to every
PWM control scheme. The method, however, also leds
to tortuous calculations where the essential
simplicity of the PWM scheme is hoplessly lost in
analytical considerations pursuing an approximation
scheme that obscures the essential aspects of the
average control action.

In recent articles, hoewever, Sira-Ramirez3-7
has explored a different design approach by using
the geometric properties of gverage PWM controlled
responses (obtained by an infinite frequency
sampling assumption). The advantage of the method
is that the design can be carried én the basis of
exact considerations about the average plant while
the actual responses generally exhibit sliding
motions arbitrarily closely approximating the
average designed behavior. Applications of these
results to the control of DC to DC power converters
are found 1in Sira-Ramirez Sira-Ramirez and
Ilic-Spong9.

An interesting class of switch controlled
systems is -represented by those 1in which the
control variable takes values in the discrete set
(~1,0,+1} (ref. 2). Typically, torque actuators,
used for control of joint poisitions in robotic
manipulators are of this type. Gas teaction jets
controlling reorientation, or detumbling, maneuvers
T rhis research was supported by the Consejo de
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in artificial satellites are also expressible
systems of this class. The controlled switch,
this case, is addressed as an ON-OFF-ON switch. In
this article we first extend the results of
Sira-Ramirezl:7 to general nonlinear PWM controlled
systems of the ON-OFF-ON type, and then proceed to
particularize the results to several PWM schemes.
As a general design method, we propose to carry out
the PWM controller specification (duty ratio
function) on the basis of the corresponding
featureg of the static nonlinearity producing a
desirable performance of the average PWM controlled
system. The  required PWM sampling frequency may be
obtained in accordance with the degree of
similarilty one would like to impose on the actual
PWM closed loqgp performance with respect to that of
the average design responses,

as
in

The average PWM model is obtaiped by replacing the
PWM regulator by means of a nonlinear memoryless
controller totally specified by the particular form
of the feedback .duty _ratio function. The average
model is then used for design purposes and the
required features of the nonlinearity are
determined, This design scheme has heen shown to
be valid even in the case of dealy-differential
plants controlled by a PWM Joop (See
sira—Ramirezlo). For the case of linear controlled
plants, a vast amount of input-output design
methods are readily available for PWM controller
specification: ~ Small Gain - Theorem, Circle
Criterion, describing functions, Nyquist stability
criterion. Popov criterion, etc. The technical
problems associated with the unbounded character of
the PWM operator and the need for introducing low
pass multipliers cascading the PWM controller (ref.
2) are entirely circumvented with our proposed
analysis and design technjque.

In Section 2 general considerations are
presented about PWM controlled systems. A general
average model is derived which substitutes the PWM
controller block under infinte frequency samnpling
of the error signal. A particular family of PWM
controller schemes are introduced in that section.
The general design procedure is also outlined in
section 2, Design examples are furnished in Section
3. Section 4 contains the conclusions and
suggestions for futher work in the area.

IT DEFINITIONS AND BASIC RESULTS

2.1 pefinition of Average PWM model.

Consider a nonlinear feedback PWM controlled
system described in R™, by :

dx/dt = £(x) + g(x)u
y = h(x)
e = yq(t) -y

u = M PWMg [e(t,)) (2.1



with-f and g smooth vector fields and h a smooth™

scalar output funetion. The control input u is a
discontinuous scalar control function obtained as
the output of a Pulse-Width-Modulator excited by

the error signal e, The sampling process is assumed
to take place at regularly Spézed time instants, ty,
with a constant frequency of value 1/T, 1.e., ty,)
=ty + T. M is a positive constant gain.

The PWM control -operator, PWMg [e], is wusually
characterized by (See ref. 2° )

PWM -[[é(tk)] -

signle(ty)] for ty X £ <ty +Tlelty)]T

0 elsewhere. (2.2)

where I[e(tg)] is_knovn,ae the duty ratiq function,
assumed to be a picéwise smooth functisn of eyra
nature ( i.e.; Tlel(ty)] = Tl-elty)] ).
the picewise smooth 'function t[e(tk)]sign[eltk)] by
N(e(tg)). N{e) is evidently odd ( N{e) = -N(-e)).

We denote

Broposition 2,1 “As the sampl;ng frequency F =
1/T tends to~ inf1n1ty, the description of the
nonlinear controlled system (2.15-(2.2) coxn01de§
with - & C o

dx/dt = f(x) + g(x)v
y = hix) -
e = yqit) -y

.v = MN(e(t))

(2.3)

System (2.3) will be henceforth addressed as the

average PWM contzolled gystem while (2.1)-(2.2) as-

the_actual PhM controlled system. .

Proof. Let I¢(t) dentote the vectox valued

function ! t¢(x(0))d0, with ¢ (x) being a given

smooth vector field on RP defining the flow of

dx/dt = &(x). Notice that the limit: lim p_,q

[I(t+OT) -I(t) ) /T = @ dlglt)/dt = @ (x(t)). The
sampled state-response of ‘the nonlinear feedback
system (2.1) can ‘be written,
equivalent integral equation, as'™;
HAERHT) = x(ty) + Te(ty+T) - Iglty) .
+ ML Ig(tgttle(t) Ty - Igty))sign [e(ty)]
"the

Therefore, according to the above expression,

limit

lim p_sg, tk_>t T [x(tk* T) —x(tk)] -; dx(t)/dt

= lim q_5, tk_>t T -1 [1f<tk+r) Iglty)] +

im0, gy >t {17 Iy (Tg(tx+Tle(ty) )T -Iglty) 1)
signfe(ty)])
= £(x(t)) + g(x(t)) M Tle(t)] sign fe(t)]

= f(x(t)) + g(x(t)) M N{e(t)] = f(x} + g(x)v [
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in terms of an .

Remark - The behavior of the infinite frequency
sampled system 1is described by the original
nonlinear plant fedback via a ponlinear _piece-wise
smooth block N(e), excited by the error signal e.
The scalar input u 1s generated as the output of
the memoryless nonlinear: function N{e). In other
words,  to evaluate the average behavior of the PWM
controlled system, the PWM controller block is
simply substituted by a ponlinear memoryless
controller totally specified by the duty ratio
function (See Figures 1 and 2). As the sampling
frequency grows to infinity, the average .and the
actual PWM responses' coincide. Thus a large
sampling frequency can always be specified which
keeps the actual PWM closed loop response of
(2.1)-(2.2) within a prespecified bound defined
about the corresponding average response of (2.3},

The Qualitative stability characteristics of the
PWM controlléd system (2.1)-(2.2) have been shown
to be captured by its infinite- -frequency sampling
average model (2.3) (See ref, 1). In particular, a
necessary ‘condition for -asymptotic stability
towards the e = 0 manifold of the actual PWM systenm
is constituted by the asymptotic stability of the
average model towards such a manifold. It was also
established in reference 1, that if the response of
the average model (2.3) is asymptotically stable
towards the e =-0 wanifold, then the actual PWM
controlled response can be made to follow,
arbitrarily close, the response of the average
model by suitably increasing of the sampling
frequency of the PWM controller. Thus, modulo
sufficiently large -but finite- sampling frequency
the following theorem holds true

Theorem 2.2 The closed loop PWM controlled system
(2.1)-(2.2) is asymptotically stable towards the e
=0 manifold if and dnly if the average PWM systen

(2.3) is asymptdtically stable towards such 2
manifold.
Proof ( See ref. 1).

2.2 A Family of PWM Controllexs

The PWM controller is exclusively determined by

the nature of the duty ratio function %(e). Unless
the duty ratio is a constant, as it 1is, quite
commonly, the ‘case in switch-requlated power
electronics devices, it actually acts as a feedback
function., The nature of such feedback .is one based
in administering the length of intersampling time

on which one of two available control actions are-

enabled to affect the system, while the rest of the
sampling period the control action is switched off
(to zero input) .
generally of fixed nature and oposite signs but

they could alsc be amplitude modulated by the error-

or the state signals. .

Here we propose several PWM control
configurations which 1lead to -well known
nonlinearities for the ayerage PWM block N(e). Some
of them, particularly the .one leading to &
saturation nonlinearity has been extensively
studied in xefgf 1,7,10 the. rest of the scheme:
presepted here are believed to be new.

The . ;a8vailable control actions are"

\



Saturation PWM controller

This controller is defined by the following even
duty ratio function.

.
ble(ty)| for le(ty)l S 1/ b

Tlelty)] = (2.4)

1 for le(ty)l » 1/ b
Evidently, the average block subsituting a PWM
controller characterized by (2.2) and (2.4) is
given by N(e) = Tle(t)]signle(t)] = satlelt)],
i,e., it is given by the saturation function of the
error signal e(t).

The gain of the saturation function is easily
shown to coincide with the parameter b of the PWM
controller,

The nature of the actual PWM controlled response
with respect to the average response in a feedback
scheme using a saturation PWM controller is such
that -under the same initial conditions- the state
responses coincide in the saturation region le(t)|
> 1/ b. In the boundary layer region, le(ty)| S
1/b, the actualstate responses slide about integral
manifolds of the average response (ref. 7).

Relay PWM Controllex

A duty ratio that remains gonstant regardless of
the value of the error signal, evidently excercises
a periodic bang-off-bang action on the controlled
plant. Evidently the constant value characterizing
the duty ratio function must be smaller than one.

Tlelty))l = Xk (0« k<l (2.5)
The average block subsituting a PWM controller

characterized by (2.2) and (2.5) is given by N(e) =
Tle(t)1signle(t)) = k sign[e(t)]}, i.e., it is given
by the ideal relay. function of the error signal
e(t).

The gain of the relay function has been shown to be
infinte.

The actual PWM controlled response exhibits, for
sufficiently large sampling frequency, a sliding
regime about the integral manifolds of the average
system on each side of the e = 0 manifold., i.e., on

e <« 0 the actual state response slides about
integral manifolds of dx/dt = f£(x)-kg(x) and for e
» 0 about integral manifolds of dx/dt = f(x)+kg(x).
The actual response slides about e = 0 if such a
manifold is attractive.

Dead-band PWM Controllex

This cohtrollex is defined by the following even
duty ratio function.

0 for Jelty)l s1/4d

Tlelty)] = (2.6)

1 for le(ty)t > 1/ d

The average block subsituting a PWM controller
characterized by (2.2) and (2.6) is given by N(e) =
Tle(t)]signle(t)] = dbd(e(t)],

‘

i.e., it is given by
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the dead-band function of the error signal e(t).

The gain of the dead-band ‘function is easily
shown to coincide with the parameter d of the PWM
controller.

In this case, it is easy to see that the state
responses of the actual dead-band PWM controlled
totally coincide with the state responses of the
average PWM controlled model under the assumption
of identical initial conditions.

Saturation with Dead-Band PWM. Controllex

This controller is defined by Ehe following duty
ratio function (d > b )

0 for tfelty)! € 1/d (2.7)

1 for le(ty)l » 1/ b
bd/(d-b) [e(ty)-1/d] for 1/d <le(tg)IS1/b

Tlelt,)] =

The average block subsituting a PWM controller
characterized by {2.2) and (2.6) is given by N(e) =
Tle(t)}signie(t)] = dbdle(t)], i.e.,
the saturation function with dead-band of the error
signal e(t).

it is given by

The gain of the saturation function with
dead-band is easily shown to coincide with the
parametet b of the PWM controller.

It should be <clear that the actual state

responses of the PWM controlled sytem coincide with
those of the average PWM model under saturation
conditions. On the linear portions of the duty
ratio characteristic, the actual response slides
about integral manifolds of the average PWM model.
The responses on the dead band zone of both systems
coincide if initial conditions are taken to be the
same. Otherwise, the responses locally evolve on
the integral manifolds of dx/dt = f(x) containing
the particluar initial conditions of each model.

Negative Deficiepncy Saturation PWM Controller

This controller is defined by the following even
duty ratio function.

1/b
(2.8)

k + Ky le(ty)l for | elty)l <

Tle(ty)]! =
1 for | e(ty)l 2 1/b

Notice that the parameters defining this duty ratic
function are related by Ky/{(1-k) = b. The average
block subsituting a PWM controller characterized by
(2.2) and {2.7) is given by N{e) =
T{e(t))sign[e(t)] = ndefle(t)], i.e., it is
by the pegative.deficiency.  function of the erro:
signal e(t}.

given

As in the case of the ideal realy, the gain of
the negative deficiency function is infiate.

saturation conditions the
actual and the average PWM responses totally
coincide. In the linear regions the integral
manifolds of the average model, on each side of the
e=0 manifold, qualify as sliding surfaces where the

As before, under



actual PWM controlled state responses evolve,
Granularity PWM Controller

This PWM controller is defined by the following

duty ratio function. (Ak = 1/n)

Tlelty)]

0 for lelty)l < Ab/2

Ak for Ab/2 « lelt))| S 3Ab/2
2Ak for 3Ab/2 ¢ le(ty) s 5Ab/2

(n-1)Ak for (2n-3)Bb/2 <le(ty) |S(2n-1)Ab/2

for |e{tyg)| > (2n-1)Ab/2 (2.9)
The average block substituting a PWM controller
characterized by (2.2) and (2.9) is given by N(e) =
Tle(t)}signle(t)] grle(t)], i.e., it is given by

the granularity function of the error signal e(t).

The gain of the grapularity function coincides

with the 2b/Ak of the PWM controller
parameters.

ratio:

The actual PWM responses exhibit sliding regimes
about integral manifolds of the average system
dx\dt f(x) iAk g(x) for each i (
1,2,...n-1)., i.e., sliding mode exist for those
regions of the K sate space where the duty ratio
function is neither saturated nor zero. The actual
state trajectories jump from leave to leave of the
discrete folliation induced by integral manifolds

= + 1

of the average system system dx/dt = £(x) + ilkg(x)
For i = 0 or n the average and actual PWM responses
coincide under identical initial conditions.

2.3 Linear Controlled Plants

‘For the case of linear controlled plants, a vast
amount of input-output design methods can be
directly used for PWM controller design based on
the average PWM model. The design problem for a
particular member of the family of described PWM
controllers is reduced to finding the stabilizing
gain corresponding to the nonlinéar block in the
classical feedback configuration shown in Figure 3.
By determining this gain, the defining parameter of
the average PWM block is uniquely determined in
most cases (granularity and infinite gain cases
excluded). These parameters completely define, in
turn, the actual stabilizing PWM controller. Among
the available methods to solve such a design
problem one finds, in general: the Small Gain
Theorem, the Circle Criterion, Describing Function
methods, Nyquist stability criterion, the Popov
criterion (especially for linear plants including
delays), etc. All these design techniques, ' readily
found in the literature (See MacFarlane 1), are
based on well-known sufficient conditions for
stability and asymptotic stability of linear
feedback controlled plants. The sampling frequency
required to arbitrarily closely approximate the
actual PWM responses to those of the designed
average FPWM model pretty much depends on the
difference one is willing to tollerate among two
such responses.
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3. SOME APPLICATION EXAMPLES

Example._3.1 Let G(s) be the rational transfer
function characterizing a causal linear
time-invariant plant. It ig easy to see, according
to the circle cirterion, that if G(s) is positive
real ( i.e,, G(s) is analytic in Re(s) > 0, the
Nyquist plot of G(s) lies in the closed right half
of the complex plane and those poles of G(s) on the
imaginary axis are simple and have a nonnegative

residue) or strictly positive xeal ( i.e., G(s-€)

is positive real for some positive€ ), then any PwM
controller, of the type described in Section 2,
will always stabilize such a plant. This positive
real requirement, incidentally, is shared by
vayiable structure systems ( in plants controlled
by a relay function) where the relay is seen as an
infinite-gain limit of an average saturation PWM
controlled system.

Example 3.2. Consider the problem of designing a”
stabilizing PWM controller of the saturation type
for a distributed linear plant described by :

e TS (sep)-1

Gls) = p>0

Let g,y (PWM) denote the gain of the average PWH
controller. Then, Jav (PWM) Sup ¢ x ¢
lsat(e)||et ™1 b The Small Gain theoren
(zames12-13) jeads to the following sufficient
condition for asymptotic stability

Gay (PM) .sup o | e TI%(p+jw) 1| = ppl < 1 =5 b < P

One may instead use a particularization of the
Circle Criterion (Sandbergl4) for the design case
of the saturation controller. This criterion leads
to : :

inf , Re [ e 3%T(p+jw)-1] » —p~!

’

If for the above plant, a stabilizing design was
required for a PWM controller characterized by a
constant duty ratio of value 0 ¢« k « 1, neither the
small gain theorem nor the particularization of
Sandberg's criterion are conclusive in asessing the
stability features of the closed loop average PWM
system. This is due to the infinite gain associated
to the relay characteristic, the nonminimum phase
character of the delayed plant transfer Ffunction
and the sufficiency of the referred criteria.

Example 3.3. Consider the kinematic and dynamic
model of a single-axis externally controlled
spacecraft whose orientation is given in terms of
the Cayley-Rodrigues representation of the attitude
parameter, denoted by £ (See Dwyer and Sira-
Ramirezls) The angular velocity is represented by
1
is the applied external torque, restricted by Te€

(~Tnax' 0 Tnax! -

O while I stands for the moment of inertia and

dé/dt = 0.5(1+£2)0) ; d@/de = T/ I (3.1)

Given arbitrary initial conditions, a slewing
maneuver is required which brings the attitude
parameter to a-final desired value §d and the

angular velocity to a rest equilibrium. For



teedback purposes a nonlinear output of the
following form is made available :

y =0 - 2h(E-Ey) /(1487 3.2)

with A < 0 . Notice that if the output function is

igeally driven to zero in finite time and the
controlled state trajectory is ideally made to stay

in such a manifold y = 0, then @ = 2A(§-
E,d)/(1+§2) and the equation governing the attitude
parameter ideally becomes linear and of the form 1
dt/dt = A(t-£3). The controlled trajectories thus

asymptotically converge to §=§y with exponential

d-cay rate set by A while, simultaneously, @ would
tend to zero as desired. Without loss of generality
we pay assume that §y = 0.

A PWM controller, with constant duty ratio, k,
.eads to an average model represented by a
nonlinear controlled plant fedback by an ideal

relay and a constant gain block of value M = k T .

preceeding the ideal relay. A sliding regime has
teen shown to globally exist about the zero error
manifold y = 0 leading to the prescribed
asymptotically stable ideal sliding dynamics (See
ref, 15) described above.

A PWM controller of the saturation type can also be
proposed to regulate the motions towards the
vicinity of the zero error manifold and
approximately obtain the desired linear stable
dynamics (see ref, 1 ). The average PWM model for
the saturation PWM controller, is governed by a
nonlinear saturation type of nonlinearity with

saturation values + 1 and a linear gain of value b.
in accordance to model (2.3), in this case, the

gain M takes the value M = b‘lma Using a Lyapunov

e
stability analysis, it is relatively
straightforward to show that the average model
trajectories of the saturation PWM controlled plant
nay be made to asymptotically evolve towards the
stabilizing and linearizing surface y = 0.

A dead-band controller is quite common in gas
Leaction control schemes governing satellite
mareuvers. This fact motivates the use of a dead
cand PWM controller, of the type described in the
preceeding section, for the above nonlinear plant.

simulated state responses of the actual dead-
Land PWM controlled system (which actually
coincides entirely with the average PWM responses)
ore shown in Figure 4. For this simulation, the

tollowing values were used I = 94 Kg-m?, A = -0.11

=5 - 2,42 - =
a7l 1, = 1.55 Kgm?/s?, g =0, d =50

4., CONCLUSIONS AND SUGGESTIONS FOR RESEARCH

In this article a design procedure has been
proposed for the specification of stabilizing
feedback PWM controllers. It was shown that, under
an infinite sampling frequency assumption, an
average model is obtained, for every member of a
family of PWM ON-OFF-ON controllers, by simply
1eplacing the discontinuous PWM controller by a

memoryless type of compensator model. This average
model captures the basic qualitative (i.e.
stability) features of the actual PWM controlled
system. This allows to treat the PWM design problem
in a more exact fashion and, in the case of
nonlinear plants, resort to well known Lyapunov
design techniques. At the same time, ‘oneé totally
circumvents the technical difficulties associated
to the fact that PWM operators are indeed unbounded
operators on the Banach space of absolutely
integrable functions. For the particular case of
linear controlled plants, design techniques based
on well-known sufficient conditions for asymptotic
satability, are made available for PWM controller
design. The results were applied, through simple

‘design examples, to PWM controller specification

for? linear and nonlinear plants. The results here
presented can be easily extended to multivariable
PWM controllers.
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Figure 2., Average Model of PWM Controlled System
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Figure 3. Average Model of Linear Plant Controlled
by Pulse-Width-Modulation
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Figure 4. State trajectory response ¢of average and
actual dead-band PWM Controlled Spacecraft Model



