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Abstract The theory of Variable Structure Systems,

and their associated Sliding Regimes, is extended to
Distributed Dynamical Systems described by First Order
Controlled Linear and Quasilinear Partial Diferential
Equations.
1. INTRODUCTION

The theory of Variable Structure Systems (VSS) and
their associated $liding Regimes constitute .an
interesting theoretical field of the Control Systems
discipline with a vast number of applications. A
detailed account of the baaic elements of the theory,
as applied to dynamical systems described by Ordinary
Differential Equations (ODE), is contained in the work
of Utkinl-3

There are only few instances where this versatile
control method has been studied in the context of
systems described by Partial Differential Equations
{PDE). In Orlov and Utkin‘, use was made of VSS for
the Sliding Mode control of a distributed thermal
process described by a second-order PDE of the
parabolic type. The scheme resorted to a finite
dimensional approximation technique of the distributed
process and the sliding mode creation problem was
defined on the associated finite dimensional
controlled system approximation characterized by a set
of ODE's. In Orlov and Utkin®, the theory of sliding
mode control was extended to indefinite dimensional
systéms described by differential equations defined in
Banach spaces. Applications were given, in that
article, for a multi-dimensional heat process.

In this article, wusing simple notions from
elementary Differential Geometry, the theory of Vss,
and their associated Sliding Regimes, is extended to
dynamical systems described by First Order Linear and
Quasilinear Partial Diferential Equations (LPDE and
QPDE respectively). The key idea is to exploit the
facts that 1) The solutions of a controlled QPDE are
represented by surfaces constituted by integral
manifolds of the controlled gharacteristic direction
field and 2) that the variable structure controlled
characteristic direction field determines, in turn,
phase flows, known as gharacteristics, which must also
slide on the switching manifold.

This paper is organized as follows: Section 2
presents the definitions and main results. The
conclusions and suggestions for further work are given
at the end of the article. Background material on the
geometric aspects of LPDE's and QPDE'a are directly
taken from Arnold® and Tikhonov et al 7. For general
background on the subject of PDE's, the reader is
referred to the extensive treatise by Couraat and
Hilbert8,
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Consider a dynamical system described by a first
order feedback-controlled quasilinear PDE with scalar-_
valued output function y :

]
dv/ot + L, [8v/3x;)%; (v, x,t,u) = biv,x,t,u)

y = hiv,x,t) (2.1)
where u = u(v,x,t) is a, possibly discontinuous,
distributed feedback control law taking values in R. v
is the distributed scalar "state" and the X;'s are the
smooth components of a time-varying
control-parametrized vector field X defined on an open
set of RP and assumed to be nonzero everywhere. b and
h are smooth functions of their arguments. All our
consjderations and results are of local character.
Conditicn y 0 is assumed to locally define an

isolated semooth manifold solution v = @P(x,t) ,
yi{Qi{x,t), x,t)
surface: 8 = { (v,x,t) € R'"*2; v = Q(x,t) } addressed
to as the §liding Manifold or §liding Surface.

i.e.,

® 0. The graph of v is a time varying

Available to the controller is a Distributed
Variable Structure Feedhack Switching law :
for > 0

ut(v,x,t) y

(2.2)

u (v, x,t) for y«<« 0

with u¥(v,x,t) > v {v,x,t) locally.

Definition 1 A Distributed Sliding Regime is said to

locally exist on an open set of the manifold S iff the

total _derivative of the output function of syster

(2.1)~ (2.2) satisfies :

1im y-> 10 dy/dt ¢« 0 and lim y-> -0 dy/dt » 0 (2.3)
To simplify notation we introduce the vector z =

col (v,x,t) and the control-parametrized vector field

é col (b{z,u),X(z,u),1l) referred to as the

characteristic direction .field of (2.1). The Lie
derivative of the sacalar output function h{(z) along

the vector field é, for a given control input u =

u(z), is denoted by Lg(z,u(z))h'

Iheorem 1 A Distributed Sliding Regime locally exists
for system (2.1) on an open set of the sliding
manifold 8, 4if and only if the phase flows
corresponding to the controlled characteristic
direction field of (2.1} exhibit a local sliding
regime under the influence of the switching law (2.2).

Broaf Suppose a distributed sliding mode locally
exists for (2.1)-(2.2), then the total time derivative
of y, evaluated on points above and below the
switching surface which lie in a small vicinity of
the sliding surface, and computed along the direction
of the controlled characteristic direction field, are
given by
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ry 20
/dt = [dh/dvidv/dt +[dh/dx}dx/dt +{dh/dt] =

h/dvib (v, %, t,ut) +[9h/dx)X (v, x,t,u*) +(dh/dt) =

Az,ut(z))b ¢ 0
Ty« Q :

/dt =[dh/dv]b(v,x,t,u”)+[oh/3x]1X(v, x,t,u”) +[3h/3t] =

(z,u™(z))h > 0.

other words, the system described by the set of
dinary differential equatigns: dz/dt = E(z,u(z))
lso known as the gharacteristic equation of the
derlying controlled PDE ) exhibits a local ealiding
gime on the same open set of the zero manifold of
> output equation y = h(z), when u(z) is ruled by
2 switching law (2.2). Sufficiency follows easily by
suming a sliding mode exists for the controlled
aracteristic system while hypothesizing that a
stributed sliding mode does not exist. By reversing
> arguments presented above, a contradiction is
sily established. @

2orem 2 Suppose a sliding regime locally exists for
stem (2.1)-(2.2) on $. Then, there exists a unique
soth feedback contxeol law u = u Q(v,x,t) such that
» characteristic direction field of (2.1) controlled
uEQ locally adopts as an jntegral surface the graph

the zero output function v = @(x,t). Moreover
cally on §

uT(@,x,t) < uEQ (@, x,t) < ut (@,x,t). (2.4)

oof  The proof amounts to demonstrating the
istence of a samooth gquivalent control for the
rresponding sliding regime of the characteristic

stem dz/dt = g(z,u) on y = h(z) = 0. Indeed, since
2 local invariance of y = § necessarily requires

/dt = 0, one has: l‘g(z,u)h = 0. On the other hand,
= existence of a local sliding regime on § implies,

cessarily, that locally on §: 3[L§h]/au # 0 i.e.

(z’u)h = 0 has, according to the implicit function

sorem, a unique solution u = uEQ(z). Since g(z,uEQ)
pointwise orthogonal to the gradient of h on y = 0,
o zero level set of h is locally a smooth integral

nifold for the flows generated by & under the

fluence of uEQ(z).By definition of @, the first
rt of the theorem is true. The second part of the
eorem was established in full generality by
ra-Ramirez? using the Mean Value _theoxem and the
oof will not be presented here. 4

mark In the above theorem, if the extreme values of
¢ feedback control law, u', u~ are not fixed at
e outset, the existence of an equivalent control
tisgying (2.4) also suffices to establish the
istence of a local sliding regime (See
ra-Ramirezlo) i.e., in such-a case, the existence of
intermediate equivalent control uEQ(z) locally
tween u*(z) and u”(z) constitutes a necessary.and
fficient condition for the existence of a saliding
gime.

The results are easily particularized for the case
systems described by controlled homogeneous and
n- homogeneous LPDE. The details of these particular

cases are left for the reader and will not be
presented here. It will only be remarked, however,
that eventhough the definition of caracteristics, for
LPDE's, is not usually made in the space of zero-jets
of the controlled PDE ( i.e., on the space of local

coordinates (v,x,t) ), but on the underlying manifold
of local coordinates (x,t), they can be lifted in a
trivial manner (See ref.7, Chapter 3). The general
results for the quasilinear case remain obviously
valid for such particular classes of systems.

3.CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The theory of Variable Structure Systems
undergoing sliding motions can be easily extended to
controlled systems described by first order
quasi-linear PDE. The key property of such class of
dynamical systems is the possibility of relating
properties of their solution to those of a
characteristic controlled system described by a set of
ordinary differential equations ( known as the
characteristic equation). This property is used in
this article to establish conditions for the local
existence of a distributed sliding regime on a given
switching surface. A distributed sliding mode locally
exists whenever the controlled characteristic system
exhibits such a controlled motion on the sliding
surface. This surface must alsoc qualify as a local
itegral manifold of an "equivalent direction field".
The equivalent direction field is the average
controlled field prescribed by the equivalent control
method on the characteristic system. The case of
systems described by implicit partial differential
equations can also be treated from an entirely
geometrical viewpoint using contact structures and the
theory of jet bundles. Such directiqn may lead to a
generalization of the results presented here. The
geometric theory of second order PDE's (ref. 8) could
also be taken as a starting point for the adeguate
treatment of distributed sliding regimes in controlled
systems described by such distributed dynamical
models.
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