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Abstract

A complcte characterization of Distributed Shdmg
Regimes is presented for dynamical systems described
by discontinuous controlled nonlinear first order
purtial  differential * equations.

Sliding Regimes,
Varying Structures,

Key . Words:

Distributed Parameter
Systems,

1. INTRODUCTION

In this article a geornemc approach is presemcd for
the characterization  qf ° slldmg reg\mes (Utkin 1978),
and their fundamental properties,” in discontinuously
controlled dynamical systems described by nonlinear
first_order " pdrtial differential equations (NFOPDE). . This
article constitutes "4 gencralization of the results
presenied in  Sira-Ramirez (1989a) for the case of
distributed sliding - mode control in first order lincar
and quasi-linear - partial differential equations. The
proposed approach for the trcated class of distributed
paramcter Systems constitutes a. fundamental departurg
from the methods, based on Banach spaces, used by
Breger et al (1980), Orlov and Utkin (1982), and from
the approximate finite-dimensional method (Orlov and
Utkin, 1987). It also differs from the Lyapunov-based
approach  (Utkin,1990) wused for a . particular
one-dimensional second order distribufcd heat process
of th¢ nonlinear parabolic type.

A distributed sliding manifold may be portrayed as the
smooth solution manifold of a desirable closed loop
dynamical system ' represented by a NFOPDE. The
prolongation to the space of l-jets of functions of the
sliding surface” is shown to play a fundamental rolc in
both the characterization of the invariance properties
of the 1dcnl ‘sliding dynamlcs and the determination of
the sliding’ mode existence -~ conditions. A controlled
NFOPDE 1is geometrically characterized as a smooth
manifold, - parametrized by the feedback control
function, in the space of 1-jets of functions. The .idcal
sliding dynamics _is obtained by impossing a local

invariance . condition on Filippov's average
(Filippov,1988) of the variable structure controlled
characteristic direction ficlds defined in "such a jet

space, with respect to the prolongation of the slldmg
manifold. Local exisicnce of -a sliding reg:mc on the
given sliding surface is then characterized in terms of
the appropriate transversality of the corresponding
characteristic direction fields “-associated to the extreme
controlled * systems- ~ with respcct to  the tangent
distribution to the slidimg manifold representing  the
solution of the ideally desirable dynamics. The results
not only characterize " sliding regimes in gencral
nonlincar first ordet ‘distributed paramcter -systems . but
they can also rederive known results for the lincar and
quasilingar cases. .. (Sira- Ramirez,19&9n) white
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generalizing those related to the explicit and implicit
finite dimensional nonlinear cases (Sira-Ramirez,
1988,1989b) The approach here adopted can also be
extended to systems described by a finite set of NFOPDE
controlled by mulnple inputs.

Section 2 of dus article contains
material on the geometrical aspects of nonlinear
partia] differential equations, Scction . 3 contains the
main results of the arlicle. Section 4 is devoted to somc
conclusions and suggestions for further rescarch.
Further background material related to this article can
be found in the books by Olver (1986), Amold (1984)
and Arnold (1988).

some background

2 MATHEMATICAL BACKGROUND

In this scction we present -some basic results about
integration of NFOPDE's by means of characteristics.The
reader is referred to the books by Olver (1986) and
:molld (1984,1988) for more thorough and enlightning
ctails

2.1 _Elements of the Geometric Theory of Nonlincar First
Order  Partial _Differential Equations

Consider a NFOPDE:
av/3t+ F(vxtp) = 0 @n

where  x  represents the vector
coordinate fumctions x; (i = 1,

of local spaual
i) deﬁmng points on
an open set in R“. t denotes time. The function v is the
unknown scalar' function and p is an n dimensional
with components  p;, représenting the partial
derivatives, 3v/3x; (i = 1,..n). We also denote by q the

partial derivative dv/dt and by x the vector of
components (p,q). & is_a smooth function of all iis
arguments.

All our considerations and results are of local chatacter
on a given open set (manifold) N of RM¥¢ described by
the wvector of local coordinate functions (v,x,t),denoted
by n. The projection of such an opert set N onto RU*1,
along the direction of v, is labeled as M, and it is
equipped with local coordinates (x.t) which we simply
denote by x. Also, we denote by z the vector of local
coordinates (v,x,t,p.q) = (n, x) in R28+3 ghich we
identify as the mumfold of 1-jets of funcuons defined
on M, labcled here as I (M,R). By TN and ! (M.,R) we
denote, respectively, the tangent bundles of N and of
(MR).

Equation (2.1) can be interpreted as the cxpression of a
2n+2 dimensional hypersurface in Il(M.R). We dencic
such an hypersurface by E and dcfine it as: .

E=¢1(0) = {z ¢ Jl(M.R): o(z) =g + Fvx,up) = 0)
22)

The space Jl(M.R) is equipped with the standard contact
induced by the nowhere zero canonical -
1-form a:= dv-pdx-ydt = dv-rdx. The contact siruciure in
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the space of 1-jets, JL(MR), is represented by the field
of 2n+2 dimensional planes -called the conlact planes
(or contact distribution )- annihilating the 1-form a. A
contact plane at the point z in I'(M,R) is denoted by I,

and it is a subspace of the tangent space of J_X(M,R) at z,
T,J'(MR). Since the exterior ‘derivative of &, denoied
by @ = da = dx adp + diadq , is a nondegencrate skéw
symmetric  bilinear form on the ficld of even
dimensional contact planes [T, the contact planes are,
indeed, symplectic vector spaces. The distribution in
T!l(M,R) annihilating the 1l-form d¢ is constituted by
the field of planes @ tangent to the hypersurface E
(tangent distribution). The plane tangent to E at z is
denoted by ©,. e

Definition 2.1 A surface E in J1(M,R) s
noncharacteristic if its tangent planes € and the
contact planes I1 are transversal, i.e., if their direct sum
at each z spans the tangent space Tlll(M.R), .

It is - generally assumed that 'the manifold E is
noncharacteristic at all points . of the space JI(M,R)
under consideration. The intcrsections of the contact
planes and tangent plancs at points z in E are, again, a
field of planes,of dimension 2n+1, which are tangent to
E. These aré the characteristic - planes. Tt is not difficult
to see how the symplectic . structure associated to the
contact structure, paturally and ‘uniquely, détérmines a
jei-field of directions belonging to the characteristic
planes. Such a field of directions, in turn, determines,
by projection, the characteristics of the nonlinear
equation (2.1) as described below.

Consider the 2-form "~ @, obtained by exterior
differentiation of the contact 1!-form «. Since the
I-fotm d ¢ is non identically zero'at z, d¢ acts on vectors
belonging to I, as a nonzero linear form. Notice that n,
is an even dimensional vector .space, while © is a
nondegenerate skew-symetric bilinear form on In,.
Hence, I, is actvally a sympleciic vector space. Every
symplectic vector space is known to be isomorphic to its
dual space. Hence, one can identify 1-forms (covectors)
with vectors of I1,. We proceed to identify, by the above
discussion, a nonzero vector £ of I, with the nonzeio
1-form d¢. by imposing the equality: do() = w(§,"). The
vector §, will be known as the jet- characteristic vector
of E at the point z. The jet-characteristic vector 13
belongs to the characteristic distribution I N @ and it it
is skew-orthogonal to istself: d6(E) = w(E.5) = 0. This
vector, ‘however, {8 nonuniquely defined. The
nonuniqueness of & arises from “the fact that one may
take any vector u = B(z)t in the span of & , and still
obtain “the same previously described identification
with the 1-form d¢. Indecd, let dé(') = w(u,”) and then
de(p )= 62(z)w(§.§)= 0, and p is ‘also characteristic. The
above procedure does, however, uniquely determine, at
cach point z, the jei-characteristic line or,
Jet-characteristic direction, containing all yectors that
are in the span of §&. The -n+l-dimensional integral
curves of the jet-characteristic directions, - contained in
E, are the jet-characteristics of the partial differential
equation. .

One can explicii]y compute, the set of brdinnr} first
order differential equations generating the jet-
characteristics for the equation (2.1) as follows:
Consider “a nonzero vector
{=Vodv+Xddx+Tat+Padp+Qadq

belonging 10 @, the Vlvn,ngcn‘t planc 0 E ianlll(M.R). For
such a vector we have:

A= oyV + X + T + QPP +Q=0 23

The vector § lies in the contact disu'il?ugion vn, if it
belongs to the riull space of the”1-form: ‘o ie., a{f) =V -
pX -qT = 0. The vector { is then, necedsarily, of the form
¢ =(pX+qT)a/ov + Xa/ax + Ta/ot + Po/dp +Qa/aq. The vector

{ belongs to the characteristic plane I, N @, if and only

if:
[0vp+6:0X +10uq+ @I T+epP+Q=0 (2.4)

The jet-characteristic vector £ has components (v =
x%.%8.1,9.4). These components ' are - determined from the
condition that the skcw scalar product of & with all
vectors of the form: (pX+qT)3/av + X3/3x + Ta/fat + Pa/ap
+Qa/3q, is identically zero. Evaluating the 2-form: da =

dx A dp on the pair of vectors: (px +q)3/dv + X 3/dx + 3/dt
+ pa/dp + § 3/3q and § , onc readily obtains:

-pX 4T+ %P+ Q=0 2.5)

Conscquently, letting the coefficients of X,T,P in (2.4)
and (2.5) bc identical and using v = x} = px + q, one
obtains an cxpression for the components of the
jet-characteristic vector vield § as:

v‘ep¢p+q= pfp*q . .
i"'p'gp, l\"‘q"1 ) @.6)
p=oypéx=-F p 5, . d-ﬂvq;§("§vq'§l

or briefly, in terms of the local coordinates 2 of JI(M,R):
i=E(2) @n

Definition_ 2.2 Let ybe .an n-di jonal submanifold
of M and let ¢: vy~ R be a smooth function. The initial
manifold G, defined in N, is constituted by the set
{(v,x,t) € N:v=eo(xt), for (x1) € ¥ }. The pair (9,y) is
referred to as the Cauchy data.. The initial jet-manifold
T, constructed in Jl(M,R) on_the basis of the Cauchy
data, is the sct conmsisting of all 1-jets of functions on M
satisfying the following requirements: 1) The base
point x of the jet (n.x) lies on y, 2) the value of the
function v at the point x is equal to @, 3) The value of
the total differential of the function.v at xe-y is such
that its restriction to the tangent planes (tangent
distribution) to y is equal to the total differential of the
initial condition @ evaluated on such plares, 4) the jet 7
= (n.x) is a point of J(MR) belonging to E.

In other words, an initial condition for the equation ¢ =
0 is an assignment of a partjcular value ¢ to the
unknown function v on the points of an n-dimcnsional
hypersurface y defined in the n+1 dimensional space of
‘coordinates x = (x,t). .

Definition 2.3 A point of the initial jet-manifold I' js spid
to be noncharacteristic for the system (2.1) if the
projection of the jet- characteristic direction at this
point onto M is transversal to y. It can bc shown
(Arnold,1988 pp.82) that an explicit condition, over the
initial data (y,¢) and the function ¢, for which ,an
initial point 2%=(n0%,x9)=(v%,x9,19,p°,4%) is non' charic-
micristic, with respect to the -equstion ¢=0, is thai the
n+1-dimensional vector o,(z°)=[§P(n°,x_°).l] is not
tangent to y. B "

For a given nonc]harlclcristic point 2° of the initial
jet-manifold T in J'(M,R) .there exists, defined in some
open meighborhood U of - x9=(x9,19), a logally unique
solution v to the equation ¢ = 0. This means that any two
solutions of (2.1), which arc made to satisfy .the samc
noncharacteristic inital condition v lun vy =®1un’y>

v(x9,19) = vO, dv(x®.i0) = (P°.q%) » x9, necessarily
coincide over somc. open subset of U. . :

Definition 2.4 The 1-graph of a function f: M + R of h+l
variables is the submanifold constituted by I-jets of 'f at
all points of M., ie., it is an n+! dimengional surface in
a 2n+3 dimensional space. B0
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The solution of equation (2.7) generates a
onc-parameter group - of - diffeomorphic transfor-
mations, on the subset E of the jet space J'(M,R), for
which the field of. contact planes ‘11 remains invariant,
From ecach ‘noncharacteristic point ~ of the intial
jet-manifold T in J'(M,R) one locally obtains g
jet-characieristic, defincd ag the integral curve of the
vector field &. The solutions of equation (2.1) are
constituted by those functions on M whose 1-graphs
coincide with jet-caracteristics on E. To find such a
solution, one solves the set of 2n+3 first order ordinary
differential equations (2.7) for. the jet-characteristics
of (2.1) on E, and performs a number of algebraic
operations .(se¢ Arnold, 1984, pp.370) to obiain the
graph of the mapping v = v(x.t), P = dv(x,1)/ax, q =
av(x.)/3t = - F(v(x,0.x,1,p(x.)) in J'(MR). The function
v(x.t} is -8 solution of (2.1) with initial condition viy- .
We call & characteristic for (2.1) the functions defined
on M which correspond to the jet-characteristics of
(21) in E. In other words, a function f, defined on M
with values in N, is a characteristic of (2.1) if its
prolongation to J'(M,R) is a jetcharacteristic of (2.1).
The field of directions in TN whose associated rlow

coincides locally with the characteristics of (2.1), will .

be termed the clgaracten'slic direction of (2.1). We
specify & characteristic vector field, % (n). defined in

TN, a8 a vector field whose span is the characteristic
direction of (2.1).

Notice that since &(z) is a_prolongation of 2 (n) to
TI’(M,R). the first n+2 componcents of E(z) necessarily
coincide with those of 2¢, According to the prolongation
formula for vector fields (Olver, 1986, pp. 108-111), the
last o+l components of E(z) are therefore discarded
when an explicit expression for 2 (n) is sought once & is
explicitly known as & (n), ie. with its components
written a3 explicit functions of the local coordinates n =
(v.x,t) of N. : :

Definition 2,5 A given n+1 dimensional manifold S in N,
characterized by the smooth graph of the function v =
3(x,1) in N, is said 0 be locally invariant with respect to
the  dynamical system (2.1) if for some
noncharacteristic set of initial data (¢y), whose graph
lics on 8, the solution of (2.1) focally coincides with S. °

An equivalent definition ‘of invariance can be given in
terms of the field of jet-characteristic - directions or,
alternatively, in terms of the characteristic vector ficld
associated to (2.1). . 5

Definition 2,6 An n+1 dimensionsl manifold S in N is
locally invariant with respect to the - system (2.1) if the
jet-characteristics of (2.1), ie., the integral curves of
§(z) in E, locally belong to the prolongation S¢V)of S 1o
SUMR). * Alternatively, §is locally invariant with
respect to (2.1) if the characteristic vector field % (n)
in TN locally belongs to the distribution tangent to S.

3. DISTRIBUTED SLIDING MODE CHARACTERIZATION IN
,VARIABLE STRUCTURE CONTROLLED NFOPDE

i1 Distibuted Variable Structure _Controlled Systems
described by NFOPDE. and  their _associated Sliding
Regimes,

Consider a dynamical distributcd system described by 4
controllcd NFOPDE:
/ot + O(v.x,tup) =0 @3.1)
y =h(v.x,t) . . A.2)

where y is the scalar-valued smo%th output function
defined on the open sct N of R®+%, x represents the
veetor of local spatial coordinate functions X (i=1L..n
) U denotes time, while w = u(v;x4) is a distributed
smooth timec-varying fccdbaék contro!  law taking

values in R. The function v is regarded as (he
distributed “state” of the conirolicd sytem. p is an n
dimensional vector with p pi repr ing
the partial derivatives, dv/ax; (i = 1,..n). As before, q
denotes dv/dt. © and h are smooth functions of all their
arguments,

Available to the controller is a distributed variable ~
structure feedback switching law

utvxt) fory >0
u= g (3.3)
e (vxt) fory <« O

with u*(v.x,t) » u"(v,x.t), locally on N.

The condition y = 0 is assumecd 10 locally define’ an
isolated smooth manifold solution v = o(x\t) in N. ie.,
h(5> (x).x) = 0. The graph of v is assumed to be &
smooth time-varying surface with locally nonzero
gradient except possibly on & sct of measure zero. The
ze10 Jevel set of h is addressed as the sliding manifold,
or the sliding surface, and is locally defincd as :

Se{n=(vxde NcR™2:vas(xy) .4

The manifold S can be proloagued (Sce Olver, 1986, pp.
97-119) to the space of 1-jets of functions, J'(M.R),
defincd on M. For this, we simply complete the sct of
coordinate values at each point of § with those of the
partial derivatives s, (x,1), $¢(x.0) at that point of S. In
this manner we obtain the 1-graph of the sliding
surface in ll(M.R) as:

$(z)=(2e TIMRY: 2 = (& (xOx1 & 4D, & (D))
(3.5)

For an unspecified control u, system (3.1): 3v/at +
(vx,up) = q + ®(v,xtup) = 0, can be interqreted as
an hypersurface EY, defined on the manifold J!(M,R),
parametrized by the control function u. If u = u(v,x.t) is
a fixed smooth distributed feedback control function,
the closed loop system (2.1),. 3v/3t + @ (v,x,t,u(v,x,t),p) =:
q+ F(v.x,t,p) = 0, corresponds 1o an hypersurface,
denoted by E, in the manifold J'(M.R). In order .to
introduce a  suitable parametrization of the
hypersurfaces representing the variable structure
controlled system (3.1),(3.2) we rewrite the controlled
system (3.1).(3.3) in an equivalent form using a
distributed switch position function v, taking values in
the discrete set {0,1) and defined on each point of
coordinates n = (v,x,t). according to the valuc of the
scalar output function y = h(v,x,t). The switch function
v acts then as a binary-valued distributed control
parameter:

WRHVO(V,x,t,ut (vx,0,p) + (1-0) OV, X0 (V.x,),p) = O

(3.6)
with : .
ve{0l1} . 3.7

We will simply write the obtaincd switch-controlled
system, with the obvious indentifications, as : 5o

av/or+ F(v.x.&,p) +VGvxtp)=0; y=hivx) (3.8)

1 fory »0
v={ ' 3.9
0 foryc O

Thus, corresponding to the controlled system (3.8)-(3.9)
one has, respectively, two hypcrsurfaces, EY and E-,
defincd in JI(M,R) as ot

E* =(z «J(MR): g Fivxtp) + Gvxtp) =0}  (3.10)
E={ze J’MR): q+F(vxtp)=0} .. : (3.11)

The ‘sct- of corresponding copirolled jet-characteristics
in E* and E" are, according to the notalion of Section

5873



1V ‘Congreso Latinoamericano
‘de Control Automé:igo
puebla, Puebla, México
Noviembre, 1990

2.1, generated by’ the vectér fields §*(and " &(2),
which we notationally wiify “under the parametrized

vector field: E(z,v), ‘with U e {0,1). We thus deriote by
&(z,1) the vector field &+(z) and’ by £(z,0) thé vector
field B*(z)." i.e., E(z,0) &0 E+(2)+(1-0)E-(2). “The
components of the vector fields &+ (z), &-(z) arc
described, respectively, by the right hand sides of the
following set of ordinary differential equations:

V= p(Fp+Gp)+q v = pr"'q

X= FytG, i=Fp ) (3.12)
f=1 te1 :

P = -(F+G)p-(F(4G,) .-* - p= -Fyp-F,

4= -(Fy+Gy)q-(Fi+Gy) . 4= -FqF

or, bricl'ly,nin the local coordinétes‘z of JRM.R} ~I;y:
i=ft@) ; i=f@) 613

It follows, from (3.12)," that. the discontinuously
controlled vector field &(z,v), with b e (0,1}, 'is described
by: ) -
ﬁ-p(Fp-rvaHq. i=Fp+va ‘
tel , p=F,+vG)p-(F+ G RS
4=-F,+v G- F+vG) . .~ (314
ie., . . -

i =§am = vEHE) H1D) b = »
= §@+ Vv EHE)- @) B R E))

The contact distribution IT jntersccts the field of planes
taugent to  EY,.gnd E- and creates on such tangent
distributions, @+ and @-, fields of 2n+l-dimensional
planes called the extreme characteristic planes. In the
manier indicated in Section 2, ‘such fields of
characteristic -planes uniquely ' deteriine the
corresponding fields of jc'_t-charac;eﬁslic directions
specified, in TI(MR), by the vector fields:*E*(z) and
£-(z). There  éxist integral submanifolds (curves) of
these _ficlds  of directions in , E¥ and E- ° which
correspond to 1-graphs of functions on M. Such
submanifolds will be termed, in E* and E-,the extreme
controlled jet-characteristics.

The extreme jet-characteristics in J1(M,R) uniquely |

define extreme characleristics in the open set N by
simple projection. These are obtained by identification
of integral submanifods of the jet-characteristics with
1-graphs -of functions defined on M which constitute
solutions of the corresponding NFOPDE. Associated ‘to
such characteristics one defines exfreme characteristic
vector fields 2 +(n) and % "(n) in TN whose
prolongations to Ti'(M{R) (See Olver, 1986, p.104)
coincide,respectively, with the - jet-characteristic vector
fields £%(z) and &(z). Tt is evident that the vector fields
2 *(n) and 2% "(n), defined in TN, are uniquely
determined. It is easy to sce that the parametrization
previously adopted for the extreme jet-characteristic
fields £+(z) and &-(z) in terms of the switching control
function v, dendted as &(z,v), is trivially inherjted by

the corresponding extreme characteristic * vector fields

2 *(n) and 2 “(n) (the argument being that the

projection from T]I(M.R) to TN does not destroy the
adopted parametrization since such an operatjon simply
amounts to deleting the prolongation components in
E¥(z) and £-(z)). In correspondence with such an
inherited paramctrization, wc also denotc by % (n,1)
the vector field 2 *(n) and by ¢ (n.0) the vector ficld

2°(n). One trivially has % (n.b) = b ¥ (m)+(1-b) %" (n). It

is easy to see from thc prolongation formula for vector

fields (Olver 1986, p.104) that,  gonversely, such a
parametrization i§. preserved, ,via prolongation, in ghc
controlled jet-chacteristic' vector fields, i.e., denoting

by "pt % " _the prolongation of the vector field .2 we .

have: pr 2 (n,V) = privx*(m)+(1-v)x"(M)] =

v pr oo ()+(1-0) pr % 7(n) = b EHEM(1-0)E(@) = E(zv)

Dsfinition. 3.1 A distributed sliding regime is said to
locally exist on an open set W (= N N 'S) of the sliding
manifold § if the towl time derivaive of the ‘output
function of the controlled system -(3.8)-(3.9) satisfics:

limy ,,ody/dtc 0 andlim, ., gdydi >0  (3.16)

Theorem 3.2 . Given Cauchy data, (¢.7), defining an

initial submanifold § of noncharadteristic points in N,
there locally exists a distributed sliding regime for the
solutions of sysiem (3.8),(3.9) on an open set W of § if
and only if the extreme characteristics (or phase flows
corresponding to the exireme controlled characteristic
direction fields 2c *(n), % "(n)) which arise from the
initial submanifold § exhibit such a local sliding
regime on &, in correspondence with the distributed
control policy (3.9).

Proof. Suppose a disiributed sliding mode locally exists
for (3.8),(3.9) on an opcn set’ W of S. Thenh, the total time
derivatives of y -computed on ‘any point ‘n of an open |
n+2 dimensional neighborhood of S with nonempty
intersection with & - satisfy conditions (3.16)
respectively on  the regions y ¢ O and y » 0. The total
time derivative at any point n in N can be computed in
terms of the dircctional derivative of the scalar
function n along the controlled characteristic 'direction
fields 2% (n). %"(n). The directional derivative *depends
on the location of the point n with respect to the sliding
surface S and, hence, it is given by : : .

fory »0: -

dy/de =[3h/avidvide + [3b/3x]dx/dt+[ah/at]

= [Bhan]) ) = L o4y h=Lo g1y heO
fory <« 0:

dy/de =(3h/avidv/dt + (3h/ax]dx/drs[h/ot]
= [3/an] %) = L gty =L o oy b > 0.

Hence, the flows corresponding to the characteristic
vector fields °C+('|) and % "(n) satisfy the conditions for
the existence of a sliding regime on S (See
Sira-Ramircz, 1989b). : X

Sufficiency is easily obtained by assuming that a
sliding regime locally exists for the flows
corresponding to the extreme controlled characteristic
direction fields ¢ *(n) and 2¢"(n), about an open set N of
the sliding manifold y = 0, while hypothesizing -that a
distributed sliding mode does nmot exist on such a set. By .
reversing the gbove arguments, a contradiction is
readily established. :

Remark Existence of local distributéd sliding regimes

for (3.8)-(3.9) on open subsets J . of the llig{ng
manifold S are compleiely characterized in terms of the
existence of local sliding regimes -on the same sliding
manifold S- for the (n+2)-dimensional time-varying )
dynamical system generating the contro! parametrized !
characteristics of (3.8) in N: =

dnfdt = 3¢(n,0) = 1 2 ) + (1-v) () ) .
=% M+l M) %" m)] y = hin) 3.17)

with v given by (3.9), according to the sign of y

We refer to (3.17)-(3.9) as the controlled characieristic
system.

The problem -of characierizing distribuied sfiding
regimes in controlled dynamical systems described by
NFOPDE is thus .reduced 1o the problem -of
characterizing sliding regimes .*for an associated
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nonlinear time-varying dynamical system described by
a finite set sct of discontinuously controlled ordinary
differential  equations ~representing the controlled
characteristic system. All known results for the
description -of . sliding motions in finite dimensional
nonlinear controlled dynamical - systems - thus become
immediately available - for - the .- above fornmulated
distributed _control problem.--The following thcorems
characterize the * existence  .of . distributed sliding
motions  for (3.8)-(3.9) -in  terms 'of “the associated
controlled characteristic system (3.17)-(3.9). ‘Some
additional - results can also be found in
Sira-Ramirez(1988 and 1989b).

Theorem -3,3 Let Ly, h denote the directional “(Lie)
derivative of the scalar function h with respect to the
vector field 2¢ . A distributed sliding regime locally
cxists on an open set W of S for the distributed sysiem
(3.8).3.9) only if the sxlre\me» characteristic  vector
ficlds 2 *(n), % “(n).? associated” to the system
(3.17)-(3.9), satisfy, on the open set &, the following
disiributed transaversality condition :

Liac+(n) 23] he 0 (3.18)

Proof Let there exisf a distributed sliding regime on an
open set " of S. Then, according to the result of

theorem 3.2 one has, on any point n of S: L')c"’(n) he 0 -

and Lao'(n) h » 0. In other words, L'x,"(n') h- L'&'(n) h=

Yty -y B e O

12 Characterization of .the Distributed Ideal Sliding
Dynamics _and the Distributcd Equivalent Control

In this scction a characterization is presented for the
Distributed ldeal Sliding Dynamics and the Distributed
Equivalent  Control (Utkin, 1978). Intuitively, wunder
ideal distributed sliding mode conditions, the closed loop
syslem solution must locally adopt the zero output level
sct Sas a local solution manifold of the resulting
conirolied  partial differential  equation, provided the
(noncharacteristic) inmitial Cauchy data is specified
precisely on the sliding manifold S. The characteristics
of the ideal sliding dynamics must then be invariant
with respect to the sliding manifold. The smooth
distributed feedback cotitrol law responsible for the
idealized controlled :response is known as the
Distributed Equivalent  Control and it formally replaces
the distributed switch position function U in the system
cquations (3.17). Such a smooth distributed feedback
control law is here denoted by »EN(vx,t) or PEN(n) .

Definition 3.4,
distribution in TN, tangent to the sliding manifold S.
Any smooth vector ficld 2¢ (n), locally belonging to such
a distributioni, annihilates the 1-form dh, i.e.,< dh,% (n)>
= 0. We denote such a distribution by Ker dh and definc
was: Kerdh={2¢(n)e TN:< dhac (m) > =0} .

The following proposition is just a restatement, in
simple terms of thc -annihilating distribution of a
i-form, of an invariance criterion for pariial

differential equations - appéaring, in terms of symimetry’

groups and infinitesimal generators, in Olver (1986,
p.103 Thm 2.27 and p. 165, Thms. 2.71 and 2.72).

Proposition 3.5 The prolongation &(z) of a vector field
%(7) to TIHMLR) ( denoted by * € = pr 4), belongs 10 the
distibution tarigent 1o’ $(Win TIT(MR) if .and only if
x{n)e Ker dh. g :

Hence, there exists a I-form @ in the cotamgent space
T* 1Y (M,R) such that < o, E(z) > = 0. Wc definc such a
i-form © as the prolongation of the 1-form dh and
denote it by " pr dh . In other words, Proposition 3.5
states that <dh.2¢ > = 0 if and only if <pr dh, pr % > = 0.

Consider the n+l dimensional

The next proposition states that the smoothly controlled
jet- characteristics, gencrated by the controlled vector

field &(z,0) in TII(M,R), locally adopt the prolongation

S(1) of the sliding manifold S as their integral manifold

if and only if the corresponding characteristics,

gencrated by the controlled vector field 2¢ (n,v) in TN, .
locally adopt S as their integral ‘manifold. Hence . the

invariance of the controlled jet-characteristics with

respect to S(1) i equivalent to the invariance of the

comtrolled characteristics with sespect to S.

Broposition 3.6 Consider the prolongation S(1) of § to
JP*(M,R). The controlled jet-characteristic direction
field £(z,v) = v E¥H(z)+(1-v)E"(z) belongs, for some smooth
control function v(n), 1o the 'distribution in TI'(M,R)
tangent to S(!) if and only if the smoothly controlled
characteristic direction field % (n,v) = vact(n) + (1-v)
2% (n), whose prolongation .to TINM,R) coincides with
§(z,v), belongs to the distribution tangent to S i.c., to

the annihilating  distribution of the l-form dh, here
denoted by Ker dh .

Proof Let 2 (n,v) e Ker dh, locally in & for some
smooth function V(n). Then < dh, % (M,0)> = O locally in
&, Hence, by the result of Proposition 3.5 above, % (n,1)

€ Ker dh if and only if < Pr dh, Pr 2¢ (n,0)> = ¢ Pr gh,
E(z,V)>= 0 i.c., if and only if &(z,n)e Ker pr dh,

The Distributed Ideal Sliding Dynamics is thus obtained
by imposing an invariance condition, with respect to
the manifold S, .on -the ideally . smooth controlled
characteristic ~flows arising from the . controlied
characteristic system (3.17)-(3.9). This ‘amounts to
constraining the corresponding smoothly controlled
characteristic vector field 2 (n,0) = 2% “(n) + v(n) & *n)
-2 “(n) ] to the distribution, Ker dh, tangent to the
given sliding surface S. - Thus,

<dh, %) + v EQmy [c *m -2 ") 1 >
=Lac-tm) + wEQ) [ t(n) - 2°tn)) B =0

it follows that the equivalent control is wuniquely given
by : .
v EQm) = cdh, ¢ “(n) /e dhl &t -2 )]s -

= Lot /Lisc*(n)-2(n) 1 I G.19)

Hence, bé virtue of (3.18), the distributed equivalent
control v Q(n) is locally well defined on the open set WV
of § where a distributed sliding regime exists. The
following thcorem gives a sufficient condition for the
existence of a local distributed sliding regimc in terms
of the computablc distributed egquivalent control
function v E m). : ’

.Theorem 3.7 A local distributcd sliding regime exists on

an open set &N of 8 if and only if the distributed

equivalent control, v E'Q(n) , satisfies:

0<vEQm) <1 . (3.20)

Proof From (3.19), it readily follows ‘that if (3.20) holdg
valid on an open set W of the sliding manifold S then,’

0¢ -<dhae’(m)>/c dh 2 -2 M) > ¢ 1 @aan

By virtue of the transversality condition (3.18) and the -
local smoothness assumption on the involved wector
fields, 'x,*(n).o,o'(n) , and the function h(n), the left
hand side incquality in (3.21) yields : ¢dh, ¢ (n) > >0,
for points'n locatcd in S and Jocated on any . arbitrarily
small ncighborhood of o in R"*2, Similarly, the right
hand side inequality in (3.21) yields: <dh,2c¥(n) > < 0.,
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The. result in Theorem 3.2 compleiés * the y'.su'Tﬁciéncy
part of the proof. Sl E Lo :

To prove nccessity, suppose that a distributed sliding
regime locally éxists on the open subset : ¥ of the
manifold S.. Then, from Theorem 3.3 the transversality
condition : L[%+(“) 26 °(n)) h < 0. holds locally valid.

Also, for any 1 in &, the relations: L’)G"‘(n)- he< O, and
Lx-(“) h > 0, are locally true. It follows that there exist

strictly - - positive smooth  function a(n) and b(n) such
that locally in .!}'. a(n)L,,o+(,‘) h + b(n) 1, “tn) h=

Lagnyse* (m)+ptniac (b v
“Llam+bin)c - miragm)ae ) 1 B

= (3BT Lo ~(m)ecatma/tatn)+bem)tac * (m)-2 "y =
0 . From thc uniqueness of .the - distributed ecquivalent
control, it follows that vEQ(n) = a(n)/[a(n)+b(n)]. Hence
0¢ DE (M) < 1 as claimed. D

A morc explicit. characterization of ideal -distributed
sliding motions and
equivalent control is " still possible “in terms of the
functions F, G and h, defining the controlled - NFOPDE in
(3.8). Indeed, the components of the
characteristic field ¢ (n,v), can be obtained by
projection of those of the controlled " jet-characteristic
difection vector &(z,U) given in (3.14). However, recall
that sach “projected componenis are supposed to be

ultimately explicit functions of wv,x,l ie., of n. The

cqﬁ)pqnqnls of % (n,v) bave the form:

. Vi-p(Fp+va)+q. ‘i-Fp~+v,Gp. =1

with € (0,1) determining the vector fields ¢ "(n) and

’X«"'"(n). The distributed transversality condition (3.18) is
readily interpreted as : : ’
{(ah/ov)p + (Fh/ax)] Gpa2 (all/E)x)Gp <o (3.23)
and ‘the equivalent control is just given by :
E
VB = - Loy b / L4y - sy 1B =
dh dh oh dh dh
— (pFp + @) + L Fp+ 2L = Fp+=
clremror ] e
©+ . 3h dh :
PIELLl ot ¢
ax P ax P
(3.24)

The ideal sliding - dynamics is obtaincd by formally
using the distributed smooth control v*=Y(n) from -(3.24)
in the system equations (3.8), with initial Cauchy data ]
specified preciscly on the  sliding manifold - S,

4. CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

The thcory of Variable Structure Systems undergoing
local sliding' motions has been extended to distributed
controlled systems described by first order nonlincar
PDE's. The key property of such a -class of dynamical
systems is the possibility of relating propertics of their
controlled solutions to those of a controlled system
described by “a” finite¢ gét of ~ordinary differential
equations known as the characteristic equations. - This
property -was used in this ariicle to ‘establish éonditions
for the -local existencé of a distributed sliding regime on
& given -sliding “manifold for notilincar fist o6rdcr
distributed dynamical systems solved with respect to the
time “derivative. A distributed
exists for :the ‘infinite dimensional dynamical system
whencever . the ».corresponding finite - dimcnsional
controlled characteristic' system  cxhibits _such kind of
motions on the prescribed sliding ‘manifold. The given

the corresponding distributed .

controlied .

(3.22)

sliding . mode Jocally .

sliding manifold  also qualifics as a local integral
manifold for the- flows "of & smoothly  coritrolied
(equivalent) characleristic - direction - field.” The
equivalent characteristic direction field coincides with
Filippov's average direction field -also prescribed by the
Equivaient Control Method {Utkin,1978) on the finite
dimensional discontinuously controlled characteristic
system. : o

The case of distributed sliding regimes in dynamical
systems described by higher ~order -nonlincar partial
differential equations, of the implicit or explicit type,
can be adequately trested from a Lie group theorctic
viewpoint by -using nmotions of symmetsy groups,
invariance, and prolongations to appropriste jet spaces,
of associated functions and infinitcsimal generators of
such symmetry groups. This avéhue is Jleft as”a topic for
further rescarch.
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