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ABSTRACT

In this paper new adaptation algorithms are proposed for a class of feedfor-
ward neural networks with differentiable and nondifferentiable nonlinearities.
The class of neural networks considered in this paper can be viewed as general-
ized single and multi-layered perceptrons. The learning parameters in the pro-
posed algorithms are adjusted to force the error between the actual and desired
outputs to satisfy a stable difference equation.

1. INTRODUCTION

An artificial neural network is a large-scale nonlinear circuit of intercon-
nected simple circuits called nodes or neurons. These networks resemble patterns
of the biological neural networks hence the term artificial neural networks.

In this“paper our interest is in the class of feedforward neural networks
which can be viewed as generalized perceptrons.

The development of the perceptron can be traced back to the early days of
pattern recognition (See [2-5,7] for more details.) Its application as an adaptive
system to the control of many degrees of freedom robotic manipulators was
reported by Albus (1] in 1975. More recently, Widrow and Winter [7], discussed
numerous applications of perceptrons for adaptive filtering adaptive pattern
recognition, and adaptive signal processing.

The central role in advancing the practicality of perceptrons, and neural net-
works in general, are played by adaptation algorithms. In the case of the single
perceptron one of the most well known algorithm that minimizes the mean square
error between the desired output and the actual output is due to Widrow and
Hoff. For the layered perceptron the central role is played by the back-
propagation algorithm (see [5] for the derivation of this algorithm). One of the
drawbacks of the back-propagation algorithm is the requirement that the non-
linear activation functions be differentiable.

In this paper we propose a new class of adaptation, or training, algorithms
for generalized single and two-layer perceptrons. Our proposed algorithms, unlike
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the back-propagation, do not require differentiability along the network’s signal
paths. On the contrary, we include activation functions which are not only
nondifferentiable (saturation functions) but also discontinuous like hard limiters.
Another feature of the training algorithms proposed in this paper is that the
learning parameters are adjusted in such a way so that the error between the
actual and desired outputs satisfies a stable difference equation. This is also
characteristic of the celebrated Widrow-Hoff algorithm for single-layer percep-
trons.

The paper is organized as follows. In the next Section we briefly review the
Widrow-Hoff adaptation rule. This rule constitutes a nice starting point in our
development. In Section 3, after introducing some notation and definitions, we
propose a new adaptation algorithm. for the single layer perceptron. The pro-
posed algorithm is a generalization of the Widrow-Hoff adaptation rule. In Sec-
tion 4 we present a new training algorithm for generalized two-layered percep-
trons. The conclusions of the paper are found in Section 5.

2. BRIEF REVIEW OF THE WIDROW-HOFF ADAPTATION RULE
The single layer perceptron as an adaptive threshold element is shown in
Fig. 1. ' .
One can use the Widrow-Hoff delta rule (see (7] for its discussion) to adjust
the weights w; (i = 1,2,...,n). The algorithm can be written as follows:

_ ae(k)X
W(k+1)—-W(k)+-W-, X#0 (2.1)
where
k = the time index or the adaption cycle number,
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Fig. 1. Single layer perceptron
W(k) = [w;(k),...,w, (k)]T is the value, at time k, of the weight vector,

= [X},..,Xy|" is the present input pattern,
e(k) = yq — y(k) is the present error,
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« = the reduction factor whose practical range is (0.1, 1.0).

After some manipulations, one can conclude that the error is reduced by a
factor of o at each new learning iteration as the weights are changed while hold-
ing the input pattern X fixed. More specifically, the error obeys the following
difference equation

ek +1)=(1 —a)e(k). (2.2)
As one can see from the above equation, the choice of o controls the speed of

convergence towards zero of the learning error signal e(+).

After discussing the Widrow-Hoff delta rule, we can now propose new adap-
tation algorithm for the single perceptron shown in Fig. 1.

3. NEW ADAPTATION RULES FOR A SINGLE PERCEPTRON

Before presenting new training algorithms for the single perceptron we shall
introduce some notation and definitions.

Let I': R‘—IR? denotes 2 nonlinear operator with the following property

L [—Xl = — x| | | (3.1)
The operator I can have, in particular, the following form
-sgn 0
. . 1 if >0
I'= -. where sgnzi=[_1 it 5 <0,
| 0 sgn
Another possible form of the operator I' is
[sat 0
. 41 if z;>1
r=t . - where satz =1{ % if z€[~1,1]
’ -1 if z <1,
0 sat
or
Fsig 0
['= " where  sig 3 =-l:e—ZI.
. 14"
0 sig

Observe that I' does not have to be a diagonal operator. However, we
require that I' is an odd operator, that is, it satisfies (3.1). Notice that I can also
be an identity operator. Armed with the above notation we can now present the
new algorithm in the following theorem.
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Theorem 1

If the weights «w; of the single perceptron, shown in Fig. 1, are adapted
according to the rule

a e(k) I'X]

Wk + 1) = W(k) + ——=——

( ) (k) XTI'X]

with 0 < o <2, (practical range for « is (0.1, 1.0)) then the error e(k) tends
asymptotically to zero with the rate of convergence (1 — ).

(XTIIX] #0), (3.2)

Proof: Note that

e(k +1) ~e(k) = yq —y(k +1) = [yg = ¥(k)] = — 3 [wi(k + 1) ~ (k)] x

i=1

= —XT[W(k + 1) — W(k)] .

We can now use the proposed update rule to obtain:

e —e = Tae(k) F[X] =—qe i T
(k +1) —e(k) X Xt x| aek) if X'I'X]#0.
Hence e(k + 1) = (1 — @) e(k). Thus, if 0 < o < 2 then lim e(k) = 0.

k—+00
O
Note that in the new adaptation algorithm, as well as in the Widrow-Hoff
algorithm, the error is reduced by a factor of c.

Observe that if I is the identity operator then the new algorithm (3.2) is the
same as the Widrow-Hoff adaptation rule. If on the other hand,

I'[X] = [sgn x;, sgn Xz, -, sgn X,|T ASGN X,
then (3.2) is the same as the algorithm proposed in [6].

We shall next present new adaptation algorithms for the multi-layer percep-’
trons. The proposed algorithms are an extension of the training algorithms
presented in Sira-Ramirez and Zak (6.

4. ADAPTATION ALGORITHMS FOR TWO-LAYER
GENERALIZED PERCEPTRONS

In this Section we will be concerned with generalized two-layer perceptron
which is a feedforward network with one layer of nodes between the input and
output nodes. One of the best known training algorithm for multi-layer percep-
trons is the back-propagation algorithm. A disadvantage of the back-propagation
algorithm is the inherent requirement of continuous differentiability of the non-
linearities. Our proposed class of algorithms, unlike the back-propagation does
not require differentiability along the network’s signal paths. On the contrary we
include activation functions which are of the hard limiter type, saturation, or any
other nonlinearity which satisfies (3.1). In the back-propagation algorithm the
learning parameters are adjusted using the gradient descent method. In our new
adaptation algorithms the learning parameters are adjusted to force the error
between the actual and desired outputs to satisfy a stable difference error equa-
tion, rather than to minimize an error function. This approach allows one to
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better control the stability and speed of convergence by appropriate choice of
parameters of the error difference equation.

We shall start our analysis by considering a two-layer adaptive neural net-
work depicted in Fig. 2. Its schematic representation is shown in Fig. 3. The

INPUT O1mn HIDDEN OUTPUT
LAYER m=1,2,...,,n| LAYER LAYER
n=1,2,...,n
A O Hjx Yox
=1,2,...0H x=1,2,...No
x=1,2,....n4
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Fig. 2. A two-layer adaptive neural network with a diagonal nonlinear operator
["in the hidden layer.

vector Y, (k) of the output components y,. (k) can be represented as

| Yo(k) = Wy (k)| Zg (k)

where Wg(k) € R™™, and Zg(k) = [[Yg(k)]. Similarly the vector Yg(k) of the
components yg, (k) is

| Yull) = [Wy(k)[TX
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Fig. 3. Schematic representation of the two-layer generalized perceptron.

where Wi(k) € R*™ and X = [xl,x2,...,xnl]T. In a schematic representation of
the two-layer adaptive generalized perceptron depicted in Fig. 3., the nonlinear
operator [ does not have to be a diagonal one. However, it must satisfy (3.1).

Let Yy denotes the desired output vector with component. yg,,
K =1,2,..,n0,. The error vector E(k) at time k is

E(k) = [e;(k), ..., € (k)] = Yq — Y,(k) .
The weights updates are represented by the following equations:
Wy (k+1) = Wg(k) + Ug(k) , Wi(k+1) = Wi(k) + Uy(k),
where Ug(k) € R"™®° and Uj(k) € R""™" are the correction matrices.
The following lemma will be needed in subsequent considerations.

Lemma

The error vector E(k) satisfies the following difference equation as a function
of the input layer and hidden layer matrix update weights Uy (k) and Uy(k):

E(k+1) — E(k) = Wa(k)]"{[[Ya(k)] — [Ya(k) + [Ur(k)]"X]}
— [Un ()] [Ya(k) + [Uy(k)|"X] (4-1)

Proof: We have
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E(k+1) — E(k) = Yo(k) — Yo(k+1)
= [Wa(K)|"Za(k) — (Wi (k) + Un (k)| Zr(k+1)
= [Wa(l)]? Za(k) — Za(k-+1)] — [Un(k)]" Zg(k+1)
= Wi (R)T{TIYR(K)] — T[¥a(k+1)]} — [Un(k)|TT[Ya(ct1)]

Since
Ya(k+1) = [Wy(k+1)]TX = [Wy(k) + Up(k)]"X = Ya(k) + [Ur(k)]"X

we have that

E(k+1) — E(k) = Wy (k)] {[[Ya (k)] = T[Ya(k) + [Ur(k)]"X]}
— [Ua ()] IYa (k) + [Ur(k)]"X]
a
The new training algorithm for the generalized two-layer perceptron is
presented in the following theorem.

Theorem 2
If the weight correction matrices Uy(k) and Ug(k) are respectively chosen as

~20 (X[ Yau(k)]"
U (k) = XT rl [)H(]

, (XTI [X] #0), (4.2)

and
Ty (Zu(k)] {AE(X)}T
(Zu (k)] T Ty [Za (k)]

where I'; and [, are operators, then the learning error vector E(k) satisfies the
following asymptotically stable difference equation:

Un(k) = — 2 Wy(k) - . (2BTy[24] #0),  (43)

E(k+1) = (I — A) E(k) , (4.4)
where A is an n,xn, diagonal matrix given by
A = diag{oy,..,0q } (4.5)

such that |1 — .| <1, kK =1,2,..n,. (Practical range for oy is (0.1, 1.0))

Proof: Note that the transpose of the weight correction matrix Uy(k) is given by
r_ —2Ya(R{NX])T
Uik)]" = T :
XTT, [X]

Substituting this last expression into the error difference equation (4.1), of
the Lemma, and taking into account (3.1) one obtains
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E(k+1) — E(k) = 2[Wg(k)] T[Yg (k)] + [Un(k)| T{Ya(k)
= 2[Wg (k)| Za(k) + [Un(k)]" Zu(k)
= [2 Wy(k) + Ugn(k)| " Za(k) .

Substituting (4.3) into the above error vector difference equation yields the follow-
ing asymptotically stable error dynamics

E(k+1) = (I — A) E(k) .
O

Notice that A may also be chosen as an arbitrary nondiagonal matrix such
that the matrix (I-A) has its eigenvalues in the open unit circle of the complex
plane. A particulary simple form of (4.2) and (4.3) is obtained when [} and I
are chosen to be the identity operators.

The above approach can be used to formulate adaptation algorithms for
three-layered feedforward networks.

5. CONCLUSIONS

In this paper training procedures have been presented for a class of feedfor-
ward neural networks. The class of neural networks we have considered can be
viewed as generalized perceptrons. The learning parameters are adjusted in such
a way so that the error between the desired and actual outputs satisfies a stable
difference equation. Research is now underway to apply the proposed adaptation
algorithms to the control of nonlinear dynamic processes.
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