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I. INTRODUCTION

The motion of structure at infinity of dynamical controlled
systems plays a fundamental role in the understanding of nonlinear
controlled dynamics. Thus far, this concept has allowed the evolution,
into a nomlinear setting, of many basic, and long standing, automatic
control problems. Among these problems we find: local stabilization,
feedback linearization, disturbance decoupling, interaction
decoupling, systems invertibility and nonlinear adaptive control (See
Byrnes and Isidori 1984, Isidori 19%85a and the excellent introductory
material in Isidori 1987, which is closely followed in this work ).

In this article, we examine the relevance of the notion of the
structure at infinity (or relative degree ) and of its associated
state coordinates transformation into normal form coordinates, in
general single-input single-output nonlinear variable structure
controlled systems operating in sliding mode (Utkin, 1978).

It is found that a sliding regime locally exists on the zero level
set of the output function, if and only if the nonlinear system has
relative degree equal to 1 (i.e., it exhibits the simplest structure
at infinity). The corresponding n-1 dimensional zero dynamics
precisely portrays the qualitative features of the ideal sliding
dvnamics (Utkin,1978) in local surface coordinates. The problem of
inducing sliding regimes on systems with relative degree higher than
one is also examined. The implications of the relative degree concept
in sliding mode disturbance decoupling, variable structure control of

feedback linearizable systems and model matching problems, via sliding
modes, are also analyzed.

In section II we present background material about a
generalization of the relative degree concept, normal forms and zero
dynamics. New results on sliding motions, for general nonlinear
systems, are also presented in that section. Section III presents
applications of sliding modes in control areas such as: Disturbance
decoupling, Feedback linearization and Model Matching. Section IV
contains the conclusions and suggestions for futher work in this area.

I1. BACKGROUND AND MAIN RESULTS
2.1 Relati D N 1 F 1 Z L :
Consider the nonlinear smooth system of the form:

dx/dt = X(x,u) 5 y = h(x) (2.1)



locally defined for all x € O, an open set in R}, u : 0 -> R, is a

(possibly discontinuous) scalar feedback input function, while, for
each fixed smooth feedback control u(x), X represents a locally smooth
controlled vector field defined on 0. The output function h: O -> R is
a locally smooth scalar function of the state. We often refer to (2.1)
as the pair (X,h).

‘The level set h™1(0) = { x € 0 : h(x) = 0 }, locally defines a
smooth n-1 dimensional 1locally regular manifold of constant rank
(i.e., an Jintegrable manifold. See Boothby, 1975), addressed as the
asliding manifold. The gradient of h(x), denoted by dh, is locally
assumed to be nonzero on h~1(0) except, possibly, on a set of meaure
zero. h™1(0) is oriented in such a way that dh locally points from the
region where h(x) < 0 towards that where h(x) > 0.

We shall refer to a property as local around x©, whenever it is
valid on an open vicinity N of a given point x° € 0 , with 0 D N. 1If

the point is located on h~1(0) we say the porperty is valid locally on
h~1(0) if it is valid on an open set M of the submanifold h~ 10y ¢

i.e., on an open subset of h~1(0) NN ).

The Lie derivative of a scalar function ¢(x) , with respect to a
smooth vector field X, locally defined on O, is denoted by Lyb.

recursively defines, for any positive integer k, : ka¢(x) =

Ly (LX"1y0(x) ).

Definition 2.1 The pair (X,h) has, locally around x® , a zero_at
infinity of multiplicity r if

Lax/aukah(x) = 0 for all x in N, and all k < r-1

Lax/aul® ~Ixh(x®) # 0 (2.2)

The integer r is also called the local_xgla;ijg_dggxgg of (X,h) at
x9. a

Example Consider the nonlinear system (2.1) with X(x,u) = f(x) + g(x)
u. Then 9dX/du = g(x). Suppose the system has local relative degree r at
x°. Using the definition 2.1 we compute, for any x in N:

Lgx/aub (x} = Lgh = 0 ; Lax/auLxh(x) = LglLgyguh(x)] = LgLghix) +
uLg2h(x) = LgLgh(x) = 0 ; Ljx,gul2xh(x)= LglgigylLgh(x)+ulgh(x)] =
Lg[szh(x) + uLgLgh(x) + uLeLgh(x) + u?LZgh(x) ) = LgL2gh(x) = 0
Generally, one obtains, LyxsguLXxh(x) = Lngfh(x) = 0, for all k < r-1
and all x in N. Finally, Lax/aqu 1xh(xo) = LgL"lfh(xo) £ 0.
Definition 2.1 thus generalizes the usual definition of local relative
degree (See Byrnes and Isidori, 1984). [ |

Remark The relative degree of (2.1) is interpreted as the minimum
number of times one has to differentiate y, with respect to time, in



order to have the derivative of y depend explicitly on u. Notice that
if y(K) ( 0 €k < r ) is independent of u, then dy(K)/du =0. Since y(k}
= Ryh(x) = Ly(Lk=lyn@] = (31X Igh(x)1/3xi%(x,w) = {dytk=1)/9x

}X(x,u) and since y(k-1) is assumed to be independent of u, it then
follows that, d[LXyh(x)1/3u = 9((I[Lk"1yh(x)])/9x}X(x,u))/du =

(LR 1yh (x) 1/9x} 3X/du = Lyy/3u (LK lyh(x)]) = 0. If y{F) is the first

time derivative that explicitly depends on u then, in general, dy () 73u
= Lax/au[la"lxh(x)] # 0 (i.e., not identically zero). This completely
justifies our definition of relative degree. [ |

Proposition 2.2 Let (2.1) have local relative degree r on x°. Set
(x) = L& 1h(x) for i = 1,2,...,x, while the functions ¢_,:(x) , 3 =
i X r+3

1,2,....,n-r, are chosen to be functionally independent of the first r
functions, with the only additional requirement that, locally axqund

x9 , Lax/auﬁu_j = 0 for all 3's. Define new z coordinates as z = ®(x)
with @ (x) = col (¢ (x),...,4,(x)] being a local diffeomorphism on N. The

system (2.1) is locally expressed, around z© = ¢(x°) as:

dzi/dt =2Zi4 i=1,2,....,-1

dz,/dt = [Lfyxh 1<<D“l(z). u)
dzpyy/dt = q4(z)  § =1,2,..., n-r.
y = 23 (2.3)

Proof Obvious from the choice of coordinates (See also Isidori,
1987) . [ ]

System (2.3) is said to be in local normal form coordinates. A
block diagram depicting the structure of the system (2.3) is shown in
Figure 1.

Remark It is easy to see, from the definition of the normal
coordinates, that if initial conditions of (2.1) are set on M ( i.e.,
on zy = 0 ), then the components 2zj,...,2, of the normal coordinate
vector z are all zero. Hence, any point x° on M is expressed, in

normal coordinates, as : (0,7) where M= col (zp43¢ .--r 2Zp). If,

furthermore, a feedback control u = (z) is used such that

[erh](d)-l(z),u(z)) = 0 locally around z®, the evolution of the

controlled system locally remains on h"l(O). ( Notice that from the
definition of local relative degree and the implicit function theorem

(Isidori, 1985a), such an 0€i(z) locally exists around 2z° and it is
uniquely defined ). 1

Definition 2.3 The description, in normal coordinates, of (2.1) with
inital conditions prescribed on an open set M of h~1(0) and feedback

control input O.(z) such that dz,/dt = [LEfyh] ((D—l(z),a(z))- 0, locally
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on M,

dn/de = q(0,M) = qo(N) (2.4)
is addressed as the zero dynamics e |

The qualitative behavior of the zero dynamics is entirely governed

by qp(N). The system is said to be minimum phase if the dimension of
the stable manifold ( See Guckenheimer and Holmes, 1983 ), around an
equilibrium point in h~1(0), is n-r. The system is_globally minimum
phase if it is minimum phase and (2.4) is globally asymptotically
stable (Byrnes and Isidori, 1984). From now on, we assume that y =
h(x) has been chosen to render the system globally minimum phase,
i.e., the internal behavior of the system, while being forced to
locally exhibit zero output value, is asymptotically stable to an
equilibrium point located on the manifold nh-1(0).

Lemma 2.4. The relative degree of a system is feedback invariant,

Proof For a system with feedback u = u(x,v), the time derivatives of
y are locally independent of u if and only if they are locally
independent of v. ' ]

Remark Lemma 2.4 implies, in particular, that for a nonlinear system,
with local relative degree r around x°, given by : dx/dt = X(x,u) ; y

= h(x), and feedback control law, u = O(x,v), which in closed loop
form is written as: dx/dt = X(x,0(x,v)) = x%(x,v) , the equality:

tky®h = LXy h, holds valid for k = 0,1,2,...,r-1 and all x in a
neighborhood of x°.

2.2 ¢ liti ] local siidi :

A local variable structure feedback control law for (X,h) is
obtained by letting the control function u take one of two possible
feedback function values in the set U = { u¥(x) , u™(x) } , with ut(x)
> u~(x) locally defined on a neighborhood N of x°, according to the
sign of the scalar output function h(x). i.e.,

ut(x) for h(x) > 0
u-
u~(x) for h(x) < 0 (2.5)

The feedback structures ut(x) and u~(x) are usually fixed
beforehand, but they may also be part of the design problem.

Definition 2.5. (Utkin, 1978. Sira-Ramirez, 1988a) A sliding regime is
said to locally exist on an open set M of h-1(0) , if, as a result of
the control policy (2.5), the state trajectories of (2.1) satisfy

Hm ooy 0% Lx(x,ut(xh = Mmooy of < dh, X(xut(x) > <0
limp -y @~ LX(x,u'(x))h = lim ) _y g~ < dh, X{x,u™(x)) > > 0. (2.6)

Theorem 2.6 A sliding regime locally exists on an open set M of
h-1(0), if and only if the system (X,h), has local relative degree



equal to 1 ( i.e., (X,h) has one zero at infinity on a point x° € M ).

Proof If Ly(x,u)h does not depend locally on u ( i.e., Lgx/gyh(x) =
d{Lxh}/du = 0 for all x in N) then, changing the control u from u*(x)
to u™(x), in the vicinity N of x°, does not have any effect on the

local sigm of Ly(y, y)h. Therefore, a sliding regime can not locally
exist on M .

To proof sufficiency, suppose Lox/auh (x) = 3(Lxh)/3u # 0 locally

around a meighborhood N of x©. Let € (x) be a smooth, locally strictly
positive function of x. Then, by virtue of the implicit function
theorem, the equation [Lyh] (x,u) = € (x) locally has a unique smooth

solution u = u~€(x) such that Ly (x,u~€(y),h(x) = € (x) > 0.

Similarly, by the same arguments, given a smooth locally strictly
negative function €'(k), a smooth control law u = uo*€(x) locally

exists around x° such that Lx(x,u*e(x))h(x) - £+(x) < 0. Hence, a

sliding regime locally exists on an open set M of h~1(0) for the found
variable structure feedback control law :

ut(x) = u€(x) for h(x) <0
u(x) = ut€(x) for hix) > 0 (]

Condition Ljxsguh # 0, is a generalized local transversality condition
(Sira-Ramirez 1988a).

Example: For systems of the form X(x,u) = f£(x) + g(x) u ; y = h(x) ,
the local transversality condition on an open set M in h~1(0) takes
the form Lgh < 0. To see this, simply subtract the sliding regime
conditions (2.6) on any point x of M : Lgh + u*Lgh < 0 and Lgh +

u"Lgh > 0, to obtain: (u+-u-1Lgh < 0. : [ |

For all initial states located on a vicinity M of x© in n-1¢0,
the unique control function, uEQ(x), locally constraining the system
trajectories to the zero level set of h(x), in the region of existence
of a sliding regime, is known as the equivalent control. (i.e., the
equivalent control locally turns the open set M in h-1(0), into an
integral manifold for the controlled system trajectories starting on M
). The resulting dynamics, ideally constrained to M, is the jideal
aliding dynamics (Utkin, 1978). A coordinate free description of such
dynamics is :

dx/dt = X (x,uEQ(x)) 2.7

A necessary and sufficient condition for an open set M of n~1(0)
to be a local integral manifold of the controlled trajectories is that

the gradient of h be locally orthogonal to the controlled vector field
X(x,uBQ(x)), i.e.,



Ly (x, uEQ(x))h(x) = <dh,x(x,uEQ(x)) > = 0 (2.8)

Theorem 2.7 A necessary condition for the local existence of a
sliding regime of (X,h) on an open set M of h~1(0) is that the
equivalent control locally exists and is uniquely defined on M.

Proof: 1If a sliding motion locally exists on M, then (X,h) has local
relative degree 1, i.e., Lyx/gyh(x) # 0 for all x in a vicinity N of
x°, By the implicit function theorem the equation, {Lxh] (x,u) = 0,
has, locally, a unique solution uEQ(x) in M for which (2.8) holds
valid. In other words, if a sliding regime exists, the equivalent
control locally exists and is uniquely defined. e
Example Let X(x,u) = £(x) + ug(x) such that locally, on an open set M
of h71(0), Lgh < 0 . Ly(x,uEQ)h = Le¢h + uEQ 1gh = 0 implies ugg = -

th/Lgh i.e,, the equivalent control locally exists and is uniquely

defined. [ |
Theorem 2.8 A necessary condition for the local existence of a
sliding regime on an open set M of h~1(0) is that there locally exists
a smooth equivalent control, satisfying:

u™(x) < uEQ(x) < ut(x) (2.9)
for the given smooth feedback functions u~(x) and ut(x).
Proof: Suppose a sliding regime locally exists M for the switching

feedback control law (2.5). Then, locally on M, the following three
relations hold valid:

Ly (x,ut(x))h = <dh, X(x,ut(x)) > <0 (2.10)
Lx(x,uEQ(x))P =  <dh,X(x,ufQ(x)) > = 0 (2.1
LX(X,U-(X))h = < dh, X(x,u"(x)) > >0 . (2.12)

Subtracting (2.11) from (2.10) and (2.12) from (2.11) one obtains : .

< dh , X(x,ut(x)) -X(x,uBQx)) >

<0
< dh , X(x,uEQ(x)) -X(x,u"(x)) > <0 (2.13)

From the mean value theorem (Boothby, 1975), there exists smooth
functions u*,(x) and uT5(x), such that locally on M :

<dh, X (x,u () =X (x,uBQ(x))> = [ut(x)-uBQ(x))< dh, x(x,u*y(x))/3u > < 0
<dh, X (x,uBQ(x)) =X (x,u7 (x))> = [(uBEQ(x)-u~(x) )< dh, X(x,u 5(x))/du > < 0
(2.14)

where u*,(x) and uTo(x), respectively, satisfy : uBQ(x) < u* (x) <
ut(x) and u (x) < uTg(x) < uEQ(x) , i.e., locally on M, u”(x) <
wEQ(x) < ut(x). [

Example For the linear in the control case, if a local sliding motion
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exists on an open set M of h™1(0), we locally have on M: Lg¢h + u*Lgh
< 0 and Lgh + u"Lgh > 0. This implies that there exists smooth
functions a(x) > 0 and b(x) > 0, such that: a(x){Lgh + u*Lgh] +
b(x) [Lgh + uTLgh) = [a(x)+b(x)] Lgh +(a(x)u? (x)+b(x)u”(x)]1g(x)=
0.i.e.,Lgh + Lgh {a(x)ut(x)+b(x)u™(x)]/la(x)+b(x)]} = 0 . i.e., uw (x) <
fa(x)ut(x)+ b(x)u~(x)])/[a(x)+b(x)] = uBQ(x) < ut(x) locally on M. &

pefinition 2.9 Let (X,h) have local relative degree 1 on x° € h~1(0).

The system (X,h) is said to exhibit a local gontrol foliation properxty
about the manifold h™1(0), if and only if given any smooth feedback
funtions wuj (x) < uj(x) < uz(x), defined on M, [Lyhl (x,uy) >
{Lxh] (x,u2) > [Lyxh] (x,u3), locally on M. (See also Sira-Ramirez,
1989) a

Theorem 2.1Q Control law (2.5) locally induces a sliding regime, for
system {X,h), on an open set M of h~1(0), if and only if (X;h)
exhibits a control foliation property about h~l1(0) and there exists a
feedback control, uEQ(x), locally satisfying (2.8) and (2.9) on M.

Proof Suppose that, thanks to a control action of the form (2.5), the
system locally exhibits a sliding regime on an open set M of n-1(0).
Then, according to theorems 2.7 and 2.8, there necessarily exists a
unique smooth uEQ(x) satisfying u~(x) < uBQ(x) < ut(x) locally on M.
Since a sliding motion exists on M, it follows that: [Lyh] (x,u”(x)) >
0, (Lxh) (x,uBQ(x)) = 0 and [Lyh] (x,u*(x)) < 0. locally on M. i.e.,
[Lxh] (x,u”(x)) > [Lyh 1(x,uEQ(x)) > [Lyh 1(x,ut(x)) on M. Hence, (X,h)
exhibits a control foliation property.

If, on the other hand the system (X,h) exhibits a éontrol
foliation property and uEQ(x) exists such that locally on an open set
M in h~1(0) : (Lyh] (x,uEQ(x)) = 0 and ut(x) > uBQ(x) > u~(x). Then, it
follows that [Lyh](x,u”(x)) > [Lxh](x,uEQ(x)) = 0 > [Lxh]) (x,u"(x)).

Hence, necessarily, (Lyxh] (x,ut(x)) < 0 and [Lgh) (x,u”(x)) > 0 holds

true on M. It follows that there exists an open neighborhood N of x° €
M, with nonempty intersection with h'1(0), where conditions (2.6) are
satisfied. Thus, a sliding regime locally exists on h=1(0). - R

Example. Notice that for X(x,u) = f£f(x) + ug(x), and if the
transversality condition Lgh < 0 holds locally true on an open set M

of h“1(0), then the control foliation property is automatically
satisfied. Since Lyh = Lgh + uLgh, then for ut > uEQ > u=, 1¢h o+
utLgh < Lgh + wBQLgh = 0 < Lgh + uTLgh . It follows that, for the
class of affine systems, the conditon u~ < uEQ < ut is both a

necessary and sufficient condition for the existence of a sliding
regime ( See Sira-Ramirez, 1988b ). [ |

Example Consider the nonlinear system:
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dxj/dt = cos(uxa) - x12 =: Xj(x,u)
dxp/dt = sin(uxj) =: Xo(x,u)

Yy = x3 =: h(x)

In this case, the vector field dJX/du = —xzsin(uxz)a/axl +
xjc0s (ux1)9/9x3. Since Lyx/gu h = xjcos(uxj), the local relative degree
of the system, with respect to the output y = x, , is equal to 1
everywhere except on the line x; = 0. Thus, a local sliding motion
exists on the manifold x; = 0 by use of an appropriate variable
structure control law. Indeed, from Ly h = sin(uxj), it is seen that
the feedback control law: u = -x3sign xj, locally creates a sliding

regime on x3 = 0 , 0 < x; < Vn. The ideal sliding dynamics is obtained
for the control law satisfying Lyh = sin(uEQ(x) x1) = 0 on xp = 0.
i.e., uEQ(x) = 0. It follows that: dx;/dt = 1-x12, locally describes
the ideal sliding motion. Figure 2 depicts the controlled phase

trajectories. [ |
2.3 S1iding Regi in_Variable St 5 ir} lati i
higher than one

If, for the proposed output function y = h(x), the system locally
exhibits relative degree r, higher than 1, on x°, then, an alternative
to create a local sliding motion, which eventually reaches h'l(O), is
to use the auxiliary output function ( see Isidori (1987), for related

ideas in local feedback atabilization ):

w o= k(x) = LFIgh(x) + cppL¥ 24h(x) + ... + ciLyxh(x)+ coh(x) (2.15)

or, in normal form coordinates:
W=z, 4 CprnzZpoq t ...+ C120 + Co2y (2.16)

Evidently, Ljx/guk(x°®) = Lax/gulT Ixh(x°®) # 0. i.e., the system (X, k)

has local relative degree 1, and a sliding motion can now be locally
created on an open set of k'l(O). Then, ideally, w = 0 and zZ, =

“Cyre2Zy-] = +++ = €122 = CoZz1. The ideal sliding system, associated
with the new sliding surface k'l(O), is expressed as:

dzi/dt = zi41 7 i=1,2,...,=-2
dzy_1/dt = zp = =Cp_2Zp_] = ... = €122 ~ Cqp2]
d2r+j /dt = q(z7,22/.3.s Zp_1s=(Cp2Zp) + ... + Cq23 +
CoZ1) v Zp41r -0 2p)
j=1,...,n-r
Yy = 23
w =0 (2.17)

It is easy to see that by suitable choice of the parameters
Cor+++1Cp-2, an asymptotically stable motion can be obtained for the

first r-1 coordinates, z; through z,..; (and hence, for z, too). Thus,



while a sliding motion locally takes place on k~1(0), the original
output y and its first r-1 derivatives asymptotically approach zero (
i.e., the state vector of the original system approaches the manifold
h~1¢0), as originally desired ).

The corresponding equivalent control is now locally given, in
original coordinates, as the unique solution of

(Lyk] (x,uBQ(x)) = [LTyh +c, HLE"lyh + ...+ cqL2xh+ coLyhl (x,uEQ(x))= 0

(2.18)

Notice that when h~1(0) is reached by the sliding controlled

trajectory, the equivalent control locally becomes the unique solution
of :

[Lyk] (x,uBQ(x)) =  [LEgh] (x,uEQ(x)) = 0 (2.19)

Example : Foi systems with affine vector fields: X = £ + u g and
output y = h(x) which exhibit relative degree r on x°, the function w
= k(x) is given by k()= LT leh(x) + ¢, oLF"2¢h(x) + ... + cLeh(x)+
coh(x) and the equivalent control (2.18) is computed as :

uBQ(x) = -Lgk/Lgk = (LTgh + ¢, oL¥"1¢h + ... + cq12¢h + coLghl /LgLE~1h

Locally, on an open set M of h-l(o), this expression takes the form :

r r-1
L fh/LgL fh.

The use of the auxiliary output w = k(x) implies the possibility of
either being able to completely measuring the original state
variables, and proceed to use (2.15), or else being able to generating

_r-1 derivatives of the original output function y. The 1last
possibility is usually accomplished by means of a high gain, phase
lead “post-processor® (Isidori,1987) fed by the output signal y(t).
The transfer function of such a post-processor is given by

~K n(s)/{(1+Ts) "1

(2.20)

with T being a sufficiently small positive constant, K a sufficiently
large gain with, locally, the same sign as Lax/aqu‘lxh(x). n(s) is a
stable polynomial built as: n(s) = sT~1 4 ¢ _,sT-2 4

.. + c18 + c4.
(See Figure 3).

Example A simplified model of a spaceccraft atempting a soft lunar
landing is given by ( Cantoni and Finzi, 1980 )

dxy/dt = x3 ; dxp/dt = g - (0/x3) u ; dx3z/dt = -u



where xj; is the position coordinate, oriented downwards with origin on
the ground, xp is the downward velocity and x3 representes the
combined mass of the spacecraft and the residual fuel. ¢ is a

constant of relative ejection velocity. The control parameter u ,
represents the rate of ejection per unit time and it is assumed to

take values on the discrete set {0, O} with O a given constant such

that ‘0O is the maximum thrust of the braking engine. Consider the
outplt to be y = h(x) = x;.

In this example, X = x33/dxy + [g - (0/x3) u)d/dxp -u 9/dx3 and Lyh =
xp while dX/du = - (0/x3)3/dxp -3/9x3 . Hence, Lyx/guh = 0. LZxh = g -
(6/x3) u and Ljxsgylxh = - (6/x3) # 0 di.e., the system has relative
degree 2. Consider then the auxiliary output w = k(x) = x; + cx; ,
with ¢ > 0. Then Lyk = cxp + g - (6/x3) u, and Lyx/gyk = -(6/x3). A
local sliding regime can now be created on x“1(0) := { x € RI xXp =
-cxy ). The equivalent control is found to be uEQ - (x3/6) [ cxp + g).
A local sliding motion exists on x"1(0) provided 0 < uEQ - (x3/0) [cx2
+ g] = (x3/o)[-c2x1 + g] < 0., The first inequality is obviously
satisfied since x3 < 0 before landing, and the second inequality
states that the net average descending force x3lg -c2x1], along the
sliding line, is to be bounded by the maximum thrust (. Notice that

since %3 = 0 when x; = 0 on the sliding surface, the position
coordinate of the ideal sliding dynamics, regulated by the
asymptotically stable dynamics : dx;/dt = - ¢ x; , guarantees a soft
lunar landing. On the sliding line the mass evolution is governed by
: dx3/dt = -(x3/06) [g -c?x3). Y

III. AN "OUTER LOOP" SLIDING MODE CONTROL APPROACH TO SOME
NONLINEAR CONTROL PROBLEMS

3.1 Robust Stabilization in Feedback Linearizable Systems

Suppose the local relative degree of the system (X,h) ‘is n at x°,
with n being the dimension of the system state. It follows that, in
normal form coordinates, the system may be locally expressed around 2°
as:

dz;/dt = zj43 i =1,2, ..., n=1
dzp/dt =(LPxh) (D71 (z),u) (3.1)
Yy = 23

where, by definition of relative degee, B(IL“xh]UD_l(z°),u))/au =
Lax/auLn'lxh 2 0. It follows, from the implicit funciton theorem, that
given any external independent scalar input function v, the equation :
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(L"xh]UD_J(z),u) = v locally has a unique smooth solution u = Q(Z,v)

around z°. Hence, using such a control law on (3.1), one obtains the
linear coptrollable system:

dzy = 2441 ¢ i = 1,2,...,n-1
dz,/dt = v : (3.2)
Yy =21

If one defines a new auxiliary linear output in new coordinates as :

w = k(z) = zp + cp2Zp-1 + ... + €122 + CoZ) (3.3)
or in original coordinates as :

w = k(x) - Ln_lxh(x) + cn_an'th(x) + ... + C1Lxh(X)+ Coh(x)-
“(3.4)

then, the relative degree of (3.1) with respect to w is 1, as it is
easily checked. Hence, a sliding motion can be created on an open set
of k~1(0) by a suitable choice of smooth (possibly linear) "outer loop
» feedback structures vt (z) and v~ (z) such that, on an open set of
k~1(0), v~ (z) < vEQ(z) < v*(z), with :
vEQ(z) = (ep-p? -cpu3) zpoy + (€n-2¢n-3 “Cn-g)2n-2 *+...+ (cn-2¢17Co) 22
+cp-1¢o (3.5)

If such a sliding regime is created on k~1(0), w is ideally set to
zero and hence, z, = -cp_2Zp.) - ... - C1Z3 - CoZ). The ideal
sliding dynamics is governed by : :

dzy/dt = z349 ; i=1,2,..., n-2 5

dzn_lldt = =Cp-2Zpn-1 = ... = C1Z2 = Cu23 (3.6)
y = z3

w=20

Evidently, system (3.6) can be made locally asymptotically stable by
suitable choice of the design parameters cy's. The result is'the
possibility of locally reaching the original surface h=1(0) while a
sliding motion locally takes place on an open set of k~1(0). The
variable structure control policy provides some degree of robustness

to the exactly feedback linearized dynamics. (See Spong and
Sira-Ramirez, 1986 ).

3.2 Disturbance Rejection Properties of Systems undergoing Sliding
Regimes.
Consider a smooth nonlinear perturbed system of the form:

dx/dt = X(x,u,w)
y = h(x) (3.7)



where w is a scalar perturbation signal affecting the system behavior.
Let us assume that the system locally has relative degree 1 on x©, and
that d(Lyxh)/dw = Lax/guh(x) = 0. (i.e., the intput w is assumed to have

local relative degree higher than 1 with respect to the output
function h). In normal form coordinates, the perturbed system is
written as :

Azy/dt = [Lyh] (@7 1(z),u,w) = [Lgh] (D 1(z),u)
dn/de = q(z1,M, w) (3.8)
Y=z

If a sliding motion can be locally created on z; = 0 , the equivalent

control uBQ(z), obtained by zeroing the first equation of (3.8), is
clearly unaffected by the perturbation signal w., Only the ideal
sliding dynamics is influenced by the perturbation input w. The
following lemma follows immediately.

Lemma 3.1 : Let (X,h) have local relative degree 1. The existence of a
local sliding motion on h~1(0) is independent of the perturbation
signal w if and only if w has local relative degree, at least, equal
to 2, with respect to the output function h(x). |

However, notice that w does, in generxal, affect the evolution of the
ideal sliding dynamics (zero dynamics), unless the normal form

coordinates zp = ¢,(x) ,..., z = ¢,(x), are chosen in such a way that
Lax/8w¢i = 0 for i=2,...,n . But, due to the fact that the normal form
description demanded that the 01'3 were chosen to also satisfy:

Lyx/9u ¢4 = 0, for i = 2,...,n , it follows that dX/dw is, at least

locally, exactly in the range of dX/du. On the other hand, 9X/dw is
locally in the range of dX/du if and only if there exists a smooth
function b(x) such that locally on M , 90X/ow = b(x) [dX/du]). Hence, for

i=2,3,...,n we have Lax/aHQi - L[b(x)ax/au]¢i = b(x) Ljx/gu ¢ = 0.
It follows that w does not affect the zero dynamics. We have thus
proved the following general theorem.

Theorem 3.2 System (3.7) is totally unaffected by perturbation
signals w, of any kind, if and only if the matching condition :

dX/0w € range { dx/du ) (3.9)

is satisfied. [

Remark For the case of affine vector fields of the form X(x,u,w) =

f(x) + g{x)u + p(x)w . Condition (3.9) is equivalent to : p(x) € range
g(x) which is a well known "invariance condition"™ ( Sira-Ramirez,
1988a,1988¢c, See also Drazenovic, 1969, for the linear time-invariant
case ). 1



Notice however that even in the case of a perturbation signal with
relative degree equal to 1, it is still possible to create a local
sliding motion on the zero level set of the output function. For
this, bounds are to be known for the perturbation signal. In genral,
the extreme values of the variable structure control law u%, u”™ will
depend on the bounds of the perturbation signal. Usually, however, the

feedback functions u?(x) . U (x) are fixed at the outset. In this case
the following theorem applies.

Theorem 3.3 Let the system dx/dt = X(x,u,w) and y = h(x) have local
relative degree 1 both in u and w, and let the system exhibit a local
control foliation property on h~1¢0). Suppose the scalar perturbation
w is known to be restricted to the bounded interval W = [ wpin » Wmax

] of the real line. A sliding regime locally exists on h~1(0) if and
only if for all w € W

u”(x) < uEQ (x,w) < ut(x)

Example Consider the dynamic model of an ideal, separately excited,
direct current motor ( Rugh, 1981 pp. 98-99):

dxy/dt = -(Ry/La)x) = (K/Ly)xpu + (Vu/L;) = Xp(x,u)
dxp/dt = -(B/J)xy + (K/Jxju + (/) T¢ = Xp(x,u)
y = X2 = h(x)

with x; being the armature current, x> the angular velocity of the

motor shaft moving against a viscous torque characterized by a damping
coefficient B and J is the moment of inertia of the mechanical load.
The control u is the controlled current in the field circuit. Vv, is
the constant armature voltage. Ry, L, represent armature circuit

resistence and inductance while K is the torque constant of the motor.
TL is a load perturbation torque.

Here, 0X/du = -(K/L,)xd/dx; + (K/J)x13/dx; and Lyy/a,h = (K/J)x; and

the system has local relative degree equal to 1 everywhere except on
Xy = 0. However, the perturbation torque, which also acts as an input,

exhibits relative degree also equal to 1, since 9X/9TL = (1/3)9/9x,

and Lax/aTL h = 1/3 # 0. Moreover, since (1/J)d/dxy € range ax/du,

the load perturbation torque, TL, can not be decoupled from the
angular velocity output. A sliding regime does exist on xp = 0 but its

creation has to take into account the magnitude bounds of the
perturbation torque. The control foliation property is trivially
satisfied in this example and thus a sliding regime can be created
whenever a variable structure feedback field current law with extreme
values ut(x), u™(x) can be prescribed such that:

u~ (x) < min we W (Bxo -w)/le < max ,e W (Bxp- w)/le < ut(x)

In spite of this possibility, the ideal sliding dynamics can not be
made totally independent of the perturbation load torque. 1



2.3 _Robust Disturbance Decoupling .in the absence of the Matching
Condition

Suppose that the input w, in (3.7), has local relative degree larger
than r with respect to the output function h(x). Let the vector §
denote the firt r normal coorinates 2z3,z5,..., 2z, . In such
ceordinates the system (3.7) 1is expressed, locally aournd z°, as:

dzy/dt = z449 4 =1,2,...,r-1
dzg/dt = [LExh) (D71 (z),u)
dan/dt = q¢,n,w - ; y =z, (3.10)

Given a smooth feedback control law u = O(z,v) such that, locally on

M, : [erh]ﬂb-l(z),a(z,v))- v, with v being an external independent

sacalar input, then, the output y is totally decoupled from the
perturbation input w (See figure 4). Notice, once more, that such a
scalar control law exists by virtue of the implicit function theorem
and the definition of relative degree. This proves the " if" part of
the following theorem:

Theorem 3.4 . Let (X,h) have relative degree r on x°. There exists a

smooth feedback control law of the form u = O(x,v) which locally

decouples the output y = h(x) from the disturbance input w, if and
only if the input w has relative degree strictly greater than r on x°
.i.e., for all x in a neighorhood N of x© :

Lyx/awli~lxh(x)y =0 ; i=1,2,...,r (3.11)

Proof: to prove necessity, suppose u = a!x,v) is any feedback control
law locally decoupling the output h from the perturbation input w.
The closed loop system is expressed as:

dx/dt = X(x,0(x,v),w) =: X%(x,v,w) (3.12)
y = h(x)

If in the system (3.12) w is locally decoupled from the output, then,
necessarily, the normal form coordinates, zy = Li‘lxah i i=

1,...,r are all locally independent of w. From (3.12) it follows that
the quantities Li'lxh i i=1,...,r are also independent of w. Hence,

locally around x° , a(Li'lxh)law - Lax/awLi'zh = 0 for i=1,2,...,r.
Since dz, /dt = [era h) (x,v,w) must also be locally independent of w,

then, one has, J[(L'x®* h)(x,v,w)/dw = 0. Hence dLTyh /3w = 0 and
therefore Lax/aer'lxh = 0 locally around x°, 1

Since Lax/awLi"lxh = [9(Li-14h) /3x13%X/3u = 0 ; i = 1,2,...,r. Condition
(3.11) is equivalent to the condition of having dX/du locally



contained in the null space of the matrix Q(x) given by :

dh/ox

a(Lxh ) /0x
Q(x)y =

dwi ) /ax
(3.13)

which constitutes a generalization of the condition found in Isidori
(1987) for systems linear in the control.

The sliding mode disturbance decoupling problem can be formulated as
follows:

Consider the perturbed system (3.7) with local relative degree r. It
is desired to find a variable structure control law, inducing a local
sliding regime on an open set of the zero level set k~1(0) of an
auxiliary output function W= k(x), such that the original output y

is locally stabilized to zero while being unaffected by the
perturbation signal w.

The variable structure control law will constitute an "outer loop"
feedback control inducing locally desirable robustness properties into
an "inner loop"” feedback control law. Such control law, of the form u

= O(x,v), is assumed to be devised for "exact"™ disturbance

decoupling. The sliding mode approach is especially useful to obtain a
robust design with respect to small modeling errors and other external
perturbations signals. This discontinuous control scheme can be
accomplished by proposing an auxiliary output function of the form:

W o= k(x) = LF7lyah(x) + cpoaL¥ 240 h(x) + ... + c3Ly0h(x)+ coh(x)
(3.14)

which in normal form coordinates is a linear output function given by
Y = K(z) = zp, + cpopzpq + ... + Cy120 + Cu2Zy (3.15)

Devising a variable structure control law that 1locally creates a
sliding regime on an open set of k~l1(0), the “outer loop® closed loop
system, in normal form coordinates, would be expressed, locally around
z%, as

dzj/dt = zj4y , i =1,2,...,r-2

dzp_.q/dt = 2z, = w ~Cr_2Zy | = ... = C1Z3 = CuZy

dzy/dt = v = 0.5(1+sign k(z))v*(z) + 0.5(1-sign k(z))v (z)

dﬂ/dt - q(glnl“”
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Y=z ; VY =k(z). (3.16)

The corresponding ideal sliding dynamics is thus

dzj/dt = z34q i =1,2,...,r-2

dz,y_1/dt = -Cp_3Zy_3 ~ ... = C1Z3 = CuZ1

dn/de = q(§,Mn,w

y=213 i Y=0 (3.17)

If the coefficients cj, in (3.15), are appropriately chosen, an
asymptotically stable motion is obtained, towards zj; = 0, which is
totally independent of the perturbation input w.

The following trivial lemma will be useful:

Lemma 3.5 Let m = m(x,u,w) with u = O(x,v,w) such that locally

dt/odw # 0, If m is locally independent of w, then, m is also locally
independent of u. 1

If one is allowed to conduct measurements on the disturbance signal w

(this will be the case in the model matching problem), one can relax
somewhat the hypothesis impossed on the formulation of the disturbance
decoupling problem.

Indeed, suppose that both the perturbation input w, and the control
input u, have local relative degree r ( notice that a smaller local
relative degree of w renders the problem unsolvable) and consider the

control law u =0(x,v,w). The closed loop system becomes:

dx/dt = X(x,u,w) = X(x,0(x,v,w),w) = X*(x,v,w)
y = h(x) (3.18)

Let Q%(x) denote the matrix in (3.13) with X substituted by X%. Using

the result of theorem 3.4, a feedback control law exists that locally
solves the disturbance decopuling problem, if and only if :

ax%/9w € Null space of Qa(x) - (3.19)

It follows, from the definition of local relative degree, that the

first r~-1 entries of the vector :(la(x) 9x%/3w, are all identically
zero. The last entry, which must also be zero, is given by:

(3 (LE~1X%h) /9x]IX%/dw = Lyya,3 L¥~140n = 0 (3.20)
Notice that since the quantities (a(Li"lxah)/ax] x%/du = Laxa/au

Li'lxah = d{ Lixah }/0w = 0 ; i=0,1,2,...,x-1 , are independent of w,
it follows, accroding to lemma 3.5, that they are also independent of
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O . Hence Li‘xah = Lixh for i = 0,1,2,...,r-1. Condition (3.20) is then
rewritten as :

LE)x"‘/au"r'lxh = L[3x/dw + (3X/du)doe/dw) LX txh

= Lyx/aw L¥ lxh + (d@/3w) L 3x/gu)Ltf ixh = 0
. (3.21)

If a control law, O(x,v,w), exists satisfying (3.21), then, one may,
essentially, eliminate all possible influence of w on the r-th
diferential equation of the normal form model. The solution of (3.21),

with respect to O, is explicitely found only in special cases, as the
next example shows.

Example : If X(x,u) = £(x) + g(x)u + p{(x)w, condition (3.21)
translates into:

Ler'lfh + (90L/dw) LgLr‘lfh = 0 . In this case LgLr'lfh and Ler‘lfh
are independent of w, and, hence , 30/dw = -(LoLF"l¢h)/ LgLF~3¢h .
Integrating with respect to w one finds that: O(x,v,w) = —(Ler‘lfh /
LgL¥ lg¢h) w + y(x,v). Choosing Y(x,v) = -(L¥gh /LgLT¥ lenh ) +

(1/LgLr—1fh )v , the controlled system, expressed in normal form
coordinates, is reduced to :

dzj/dt = 25417 ; i =1,2,...,r-1
dz, /dt = v

an/de = q&n,w) y =1z (3.22) &

Once again, v can be designed as a variable structure feedback control
law switching on the basis of the sign of an auxiliary output
function of the form, h(z) = z .+ cr-zzt'1+ ... + coz31, with

appropriately chosen coefficients.

In the model matching problem (Isidori,1985a, 1985b,1987) one wishes
to obtain a feedback control law for the system : dx/dt = X(x,u) , y =
h(x) such the input-output behavior coincides with that of a linear
system characterized by: dz/dt = Az + bw , y = cz . In the design of
such a feedback control law, we are allowed to measure the input w of
the reference linear system and its state vector z, i.e., u =

O(x,z,w).

The problem can be solved by seeking the required feedack so that the
output error signal, e = h{(x) - Cz, is decoupled from the input w.
One can also impose, after a local decoupling law has been found, that

the nonlinear system output y, be robustly stabilized to zero from the
input w.
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Consider the "extended"” system dx®/dt = X®(x®,u,w) ; y = h®(x®),
with x© = collz,x] given by :

a [ z :] [ Az ] [ bw ]
—- = + ; e= h(x)-cz
dt x X(x,u) 0

(3.23)
ah ®/0x¢® -c dh/dx
e (u e K )/t -ch ALy *h)/ox
Q (x) = =
. r-1 r-1
3Lt ! ne)saxe ~cA a(anh)/ax
X
] ) (3.24)

For the extended system 9X€/dw = col [b, 9x%/3w] . Using the result of

theorem 3.4, thie column vector must belong to the null space of Q
€(x). This implies that the following conditions must be satisfied:

- (¢4 - 0; - a Oy = 0: .o -1
cb +Lax /awh 0; cAb + Lax /3w Lx h 0; ... :-cAf~"'b
+ Laxa/aw Lr-lxa h =0
(3.25)

Since the relative degree is invariant under feedback, the terms of
the form: Lgx® 5. *%¢® n, (x = 1,..., r-2) in (3.25) vanish. This

means that, necessarily, cb = cAb =, ..., cAT=2p = 0 ., The linear
reference model must exhibit, at least, the same relative degree as

the nonlinear system. Since, by Lemma 3.5, kaah - kah,e for k =

0,1,..., r=1 . The last equality in (3.25) implies that the nonlinear
feedback control law must satisfy :

-CAr-lb*i' Laxa/aw Lr-lxa h = ‘CAr-lb + L(aX/au) (aa/aw) Lr-lxh

- —CAr-lb + (90L/dw) L(ax/au)Lz-lxh =0
i.e., (30/dw) = (cAT~1b)/Ljx 3 L¥ Ixh. Since in this case 9X/du is
independent of w ( and so is L“'lxh ), one can integrate with respect

ot w, to obtain:

a(x,z,w) = (cAT"1b/ Lgx/gul=~ixh] w + y(x,2) (3.26)

To determine the unspecified part, ¥(x,z), of the feedback control law
(3.26), one imposes the equality among the r-th derivatives of the
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output, y, of the nonlinear system, and the corresponding one of-the
reference model output (See 1Ilsidori, 1987). This is equivalent:-to
setting to zero the r-th differential equation of the normal form
model of the extended system. This procedure leads to

CArZ‘l'CAr-le =[Lxrh] (x,0{x,2,wWw)) = [Lxrh] (x, [CAr—lb/Lax/aqu—lxh] w
+ Yix, z))
(3.27)

The definition of relative degree and the implicit function theorem
guarantee the local existence of a unique solution for Y(x,z), i.e.,
for O(x,z,w).

Example for controlled vector fields X of the form: f+gu, equation
(3.27) results in:

cATz + cA¥"lbw = LgFh + ((cAF1b/Lay gL " 1xh] w + Y(x,2)) LthT;lfh

i.e.,

O(x,z,w) = [cAT Ib/L3y g L " 1xhlw + Y(x,2)
={cATz + cA™ lbw -L%¢h 1/ LgL¥"l¢h n

The closed loop system makes the nonlinear model behave in the same
manner as the linear system from the input-output viewpoint, except
for a term depending on the initial condition that can also be
appropriately set to zero.

Indeed, the output of the nonlinear controlled system is of the form:

y{t) = h(x(t)) = e(t) + cz(t) = e(t) +J ceA(t-c)bw(o)do
(e}
(3.28)

Writing the normal form equations for the extended systeﬁ, it is easy
to see that if a control law obtained from (3.27) is used, the term
e(t), above, only depends on the initial conditions of the exténded
sytstem. Its effect can therefore be cancelled.

The output y(t) generated by the closed loop extended system can now
be stabilized by appropriate choice of the input w. Since the
nonlinear system behaves in a linear fashion and responds according to
(3.28), a variable structure control law ( which properly takes into
account the relative degree of the linear system) can now be devised
for robust stabilization of the nonlinear system with arbitrarily
prespecified eigenvalues. The details are left for the reader. :

IV CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this article the relevance of the relative degree concept has been
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examined in the analysis and design issues related to the creation of
sliding regimes for general nonlinear systems. The results indicate
that the simplest possible structure at infinity must be exhibited by
nonlinear systems undergoing sliding motions on the zero level set of
the output feedback function. General necessary as well as necessary
and sufficient conditions for the existence of sliding regimes have
been presented. The disturbance rejection properties of sliding mode
control were examined and a generalization of the matching condition
was found. The implications of sliding mode control as an "outer loop"
feedback strategy was also examined in a variety of control problems
including; Local Stabilization of Feedback Linearizable Systems,
Disturbance Decoupling problems -with and without measurement of the
disturbance input- and Nonlinear Model Matching.

Several important research areas may be pursued in the future, within
the context of this article. For instance, one may wish to extend the
general results about sliding motions to the case of nonlinear
multivariable systems.
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Figure 1. Block diagram of a nonlinear system in normal form
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Figure 3. Sliding Regime creation in systems of relative degree > 1
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Figure 4. Confinement of perturbations to zero dynamics block



