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Abstract The method of Extended Linearization is proposed for the
systematic solution of sliding mode controller design in DC-to-DC
Power Converters of the Boost and the Buck-Boost type. A
nonlinear sliding surface with suitable properties is synthesized on
the basis of the extension of a linear design carried out on the
average incremental model of the converter. The obtained fecdback
strategies lead to asymptotically stable Sliding Modes with
remarkable self-scheduling properties. Simulation examples are
presented for illustrative purposes.

1. INTRODUCTION

In this article, a new method is proposed for the synthesis of
stabilizing Sliding Modes (Utkin {1]) in bilinear switch-controlled
DC-to-DC Power Supplies. The method of Extended Linearization,
developed by Rugh and his co-workers in [2]-[3] is extensively used
for the specification of the nonlinear sliding surface. The design
technique entitles resorting primarily to parametrized linearization,
about a general constant equilibrium point, of a suitably defined
average converter model. Using linear sliding-mode design results
(Utkin [1]), a traditional stabilizing sliding hyperplane design is
carried out on the basis of the family of parametrized linear systems.
A most convenient framework for this purspose consists in placing
the average incremental (linearized) model in controllable canonical
form by means of standard incremental state coordinates
transformation. The linear design is led by imposing a set of stable
eigenvalues, chosen independently of the constant operating point,
on the resulting ideal sliding dynamics. The core of the method lies
in specifying a suitable extension of the sliding hyperplane design
and thus obtaining a nonlinear switching manifold. The designed
surface, which is tangent to the prescribed hyperplane, contains the
equilibrium point and it is parametrizable in terms of the nominal
operating conditions. A conceptual advantage of this procedure is
that the resulting ideal sliding dynamics can always be made locally
linear (modulo a suitable local diffeomorphic state coordinate
transformation directly derivable from the linearized system model).
A direct integration procedure of the synthesized sliding hyperplane
results i a sliding surface, which is generally nonuniquely defined.
This feature is characteristic in the standard integration schemes
used in Externded Linearization controller design techniques [2]-[3].
The nonlinear sliding mode switching logic is synthesized on the
basis of the obtained nonlinear sliding surface coordinate function.
The region of existence of a stabilizing sliding regime is assessed
fror knowledge of the parametrized equivalent control.

The proposed sliding mode controller exhibits a most important
property, aside from those already mentioned, related to adaptability
to sudden changes in the nominal operating conditions. Such
self-scheduling properties lie, in general, at the heart of the extended
linearization method. Thus, if a desirable, or accidental, change of
the nominal operating conditions of the converter takes place, the
proposed discontinuous control scheme automatically creates a
sliding regime which stabilizes the converters trajectories to the new
equilibrium point, located on a new corresponding sliding surface.
This last property is clearly inherited from well known advantages of
the extended linearization technique, and it results in no need for a
"scheduling” process of the sliding manifold and of the switching
"gains". Sliding regimes, based on Extended Linearization, have
been also recently proposed by the authors for a variety of aerospace
control problems [4].{5].
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Section 2 of this article presents a general procedure for
synthesizing stable nonlinear sliding manifolds, for a large class of
switched controlled systems, via Extended Linearization. Section 3
presents applications of the proposed design procedure to the Boost
Converter and the Buck-Boost Converter Models. The results are
accompanied by simulations. Section 4 summarizes the conclusions
and suggestions for further work.

2. AN EXTENDED LINEARIZATION SYNTHESIS
PROCEDURE FOR SLIDING MODE CONTROLLERS
IN NONLINEAR SWITCHING SYSTEMS

2.1 Problem Formulation

Consider the n-dimensional switched controlled dynamical
nonlinear system :

x=f(x) +ugx)+n 2.1)

where f(-) and g (-) are smooth vector fields defined on an open set
of RN, and v is a constant vector. The control input function u takes
values on the binary discrete set {0,1}. This general formulation
corresponds to the typical situation in bilinear switched controlled
circuits as well as in the most common category of switch-mode
controlled DC-to-DC power converters ( See Sira-Ramirez [6] )

Associated to (2.1), and under the assumption of fast
switchings, we define an average model by formally replacing the
discontinuous control function u in (2.1) by a continuous piecewise
smooth function p

i=f@)+pg@+n o293

where the state vector is now denoted by z, just to differentiate it
from the actual state x.

One of the main difficulties in using any linearization method on
the specification of a controller for switching systems of the form
(2.1) lies in the fact that (2.1) cannot be linearized due the discrete
nature of u and the high frequency control discontinuities associated
with the operation of such class of systems. However, in two
important discontinuous feedback control schemes represented by
sliding mode controlled systems and PWM control based strategies,
an infinite switching frequency average model of (2.1) may be

obtained, precisely, in the form of equation (2.2). In both cases the
ideally controlled dynamics, or the average model, is obtained by
substituting the discontinuous control function u by the piecewise
smooth equivalent control or by the piecewise smooth duty ratio
function. In any of the two above cases, the average conirol function
W takes values in the closed interval [0,1]. Notice that a linearization
procedure is entirely feasible, possibly in a local fashion, on average
models of the form (2.2). This justifies our use of the extended
linearization technique in switching systems (see also Sira-Ramirez

7

The average controlled system (2.2) is assumed to have a
continuous family of constant state equilibrium points, Z(U),
corresponding to average constant inputs, J = U, which are neither 0
nor 1, i.e., 0 U « 1.The equilibrium points satisfy :

f(Z(U)) + Ug(Z(U)) +n =0.
The pair of lincarized maps, given by :
[ 9f/3x(Z(U))+Udg/ox(Z(U)), g(Z(U)))

's assumed to be controllable.
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(t is desired to locally maintain, in a stable fashion, the
trajectories of the nonlinear system (2.1) in the vicinity of the
constant nominal average equilibrium trajectory, Z(U), by means of
a sliding motion suitably induced on a manifold S, which contains
such an equilibrium point. In other words, it is required to
synthesize 1) a nonlinear sliding surface S, parametrized by the
nominal average control input U, of the form:

S={xe R s(x,U)=0} (2.3)
such that s(Z(U),U) = 0, and 2) an associated variable structure
control law :

1 for s(x,U)»>0

ux,U) = 0 for s(x,U) <0

2.4)

which automatically forces every small state deviation, from the
nominal operating conditions, to zero, via the local creation of a
stable sliding regime, taking place on S, and leading the state
trajectory to X(U). This stabilization is to be accomplished, of
course, modulo small chattering around the prescribed equilibrium
point.

In order to specify such a sliding manifold we propose to resort
to the method of Extended Linearization ([2]-[3)]) as indicated in the
following paragraphs.

2.2 A Nonlinear Sliding Mode Controller Design based on Extended
Linearization .

1) Linearize the average dynamical system (2.2) about each point
in the family of average constant operating trajectories, [U,Z(U)],
obtaining the following parametrized family of linear systems:

25 = A(U)zs + b(U)us 2.5)
where, for fixed U, the input and state perturbation variables are
defined, respectively, as: pg = p()-U, zg(t) = z(t)~Z(U) , while
the n X n matrix A(U) and the n-vector b(U) are defined as :

of
AU) =5 (ZU) +U g% ZU)) ; bU) =g (ZW) (2.6)

) §inpe the pair [A(U),b(U)] is assumed to be controllable, a
similarity transformation exists of the form:

Ls=PWU)zs=: [P1(U).p2V).--- paWzs  (2.7)

such that (2.5) may be represented as a controllable canonical
realization. The nonsingular matrix P(U) is obtained from the well
known expression :

P ~}U) =[b(U), AU, - -, AP-1(NbU)] M)

2.8)
o) o) .- 1
() o3(U) 0
M) = : : :
o1 U) 1 :
1 0 0

where:
det{AI-A(W)] = A" + o (U) AL o(U) A2+ .. + og(U).

2) Obtain the transformed system in controllable canonical form
as:

C1s=Cas

L25= s
: 2.9)

t(n-l)5= Lo
{5 = —0n-1(U)Lns-0n-2 (U)(n-106 - - - —0p(U)E 15 + s

3) Use as a sliding surface the linear manifold :

n
Z5={{se R": 08l = 2, cilis =cTls=0 ; cn

i=1

1}
(2.10)

and choose the coefficients c;, independently of the operating point
[Z(U),U], such that the roots of the characteristic polynomial .

n .
Z Cikl-l
i=1
for the (reduced) linear ideal sliding dynamics are specified at
convenient locations in the open left half of the complex plane. i.e.,
so that the autonomous ideal sliding mode dynamical system:

0 (2.11)

G1s=02s

§:25 =33 @.12)
En16= = cnt Ln-1)3— Cn28m-2)s =~ = €1 L1s

is asymptotically stable toward the origin of transformed
coordinates.

4) Obtain, on the basis of the previously described design steps,
the parametrized sliding hyperplane specification in terms of the

averaze perturbed state coordinates (g, as follows:

Ss={ zs€ R : 55(zs U) :=6gP(U)z = cTP(U)zs=0 }
(2.13)

5) Obtain a nonlinear sliding manifold S, characterized by the
parametrized surface coordinate function s(z,U) =0 such that its

:corresponding linearization about the operating point [Z(U),U],

yields back the sliding hyperplane (2.13). In other words, find a
nonlinear switching surface, in average state coordinates z, which is -
tangent to the sliding hyperplane (2.13) at the equilibrium point. This
sliding manifold can be immediately expressed in actual state
coordinates x as s(x,U) =0

5a) Sliding Manifold We must, thus, find a nonlinear sliding

- surface coordinate function s(x,U), parametrized by the constant

operating point U, such that the following relations are satisfied:

3stx.U) = cTR(U) =[cTpy(W), cTpaU), - , Tpa (L)
# lx=xty @.14)
or, componentwise : .
FsxU) =cTpU) 5 i=12.n  (215)
axi x =X(U)

with the additional (boundary) condition : s(X(U),U) = 0. Where
X(U) = Z(U).

Remark In general, there are many parametrized sliding surface
coordinate functions, s(x,U), which satisfy relations (2.14) and the
boundary condition. Such a lack of uniqueness of solution may not
be totally inconvenient. However, the following direct integration
procedure, inspired by the results in Rugh {2], allows one to obtain
a nonlinear sliding manifold in a systematic manner :

1) Assume, without loss of generality, that the first component
X1 (U) of the vector X(U) is invertible, i.e., let there exist a unique
solution, X;~1(x), for U in the equation x; = X{(U).

2) It can be verified, after partial differentiation with respect to
the components of the vector ~ x and substitution of the
equilibrium point, that the following manifold is one possible

solution for the required parametrized nonlincar sliding manifold:



X1 lxp)

S={ xeR": sxU) = cTp) X @ 49
0] dd
< 1 1
+ Y eToxi ey - XiXi'xp)] = 0)
i=2
2.16) n
5b) ival Once the nonlinear sliding surface

coordinate function s(x,U) is known, computation of the equivalent
control follows by imposing the well known (ideal) invariance
conditions, which make of the switching manifold a local integral
manifold of the smoothly controlled system:

s =0 , % seU) =0 @17
5¢) Sliding Mode Switching Logic A nonlinear sliding mode

switching strategy is usually synthesized such that the sliding mode
existence conditions (Utkin [1] ) are satisfied, at least, in a local
fashion. Such well known conditions are given by:

D) gy oim BEU L @)
s+ & s»o- &

It has becn shown that, for nonlinear systems which are linear in
the scalar control input, a necessary and sufficient conditions for the
local existence of a sliding mode is that the equivalent control locally
exhibits values which are intermediate between the extreme
numerical values representing the the switch position values (i.e., 0
<uEQ(x,U) « 1). The region of existence of such a sliding regime
coincides, precisely, with the region where such an intermediacy
condition is satisfied by the equivalent control. One may, therefore,
synthesize the nonlinear sliding mode switching logic from
knowledge of the sliding manifold coordinate function, s(x,U), as
follows :

u(x,U) = %[1+ sgn s(x,U)] (2.19)

In more general cases, where there is no special input structure
to the system, the above switching logic, or any one satisfying the
equivalent control intermediacy condition, may still locally create a
sliding regime provided the system exhibits a control foliation
property (See Sira-Ramirez [8]). For the class of application
examples we will be presenting in the next section, a switching
control law of the form (2.19) suffices.

Notice that due to the discrete nature of the control input set, the
equivalent control function is necessarily limited to the closed
interval [0,1]. Thus, the region of existence of a sliding mode, on
the switching manifold, may not be global in the state space of the
system. A necessary and sufficient condition for assessing the region
of existence of sliding regimes in the above class of systems was
given by Sira-Ramirez in [9). Such region is simply defined by:

0< vEQx,U) <1 2.20)

3. APPLICATIONS TO SLIDING MODE
CONTROLLER DESIGN FOR BILINEAR SWITCH
CONTROLLED CONVERTERS

In this section we present applications of the extended
linearization based sliding mode control synthesi:. procedure,
developed in Section 2, for typical bilinear switch-mode DC-to-DC
Power converters.

3.1 Boost Converter

Consider the boost converter model shown in figure 1. This
converter is described by the following bilinear system of controlled
differential equations :

dxy/dt=- wox2 +uwoxy +b
dxo/dt = wox) - Wix2 - U WoX| [€RY)

where, x; =IVL,x) = VNC represent normalized input current
and output voltage variables, respectively. The quantity b = ENL

is the normalized external input voltage and , wo = 1 ALC and wy=

1/RC are, respectively, the LC (input) circuit natural oscillating
frequency and the RC (output) circuit time constant. The variable u
denotes the switch position function, acting as a control input, and
taking values in the discrete set { 0, 1}. System (3.1) is of the same
form as (2.1), with n=[b 0]. We now summarize, according
to the theory presented in the previous section, the formulae leading
to a nonlinear sliding mode controller design for the average model
of (3.1) using extended linearization.

Ver; nverter m
dzy/dt =- wyzg + H Wozp + b
dzp/dt = wyz - W12 - WWoZ) 3.2
i ilibri

p=U; ZjU)=bwifiwo2(1-UR];  Zp(U) = bwe(1-U)]

(3.3)

metrized family of lineari m he constan
operating points

d [z 0 -w(l-U) J[zist) bi(1-U)
dt[zzs(t)]{ wo(1-U) -w1 ][128(1)]+[.bwl/[w°(1_u)2] =

(3.4)
with :
zig O =270 -ZjU); i=1,2.; ps®O=p®-U.
ransformati i i il
form
bw b
Cis | wii-Uuy wh(1-u2 wo(l-U) [ 215 }
Las | b 2w+ wi(1-U)?) b .2bwy |l z5
wo(1-U)
(3.5)
ametrized family of linearizations in controllable canonical
orm
§15=§2a 3.6)
C25=- wg(1-U)X15- wilas + Us
in iding surf; i lidin ics | nsform
state coordinates :
ot = Gas+ e1is (3.7
Cis=-cilis 5 c1>0 (3.8)
i idin in original (aver in:

bw; ] cib 2bw |
si(zg) =|b+ —S2WL |, +[ 1 L_| 7)5=0
wia-u)  woll-0) wol-U)] T " 3.9)
linear sliding surfac uivalen idin

gontroller

SxU) = blx; - ZuU)] + delxt - )] + 923 - Zw)] = 0

(3.10)

_ 1. bbreixy)-wie1-2w)x3
o,y = 1 wo(b+C1x )xo-Wo(C1-2wW1)X X2 @11
u=101+sgnse)) (3.12)



The region of existence of a sliding mode on the switching
manifold, according to (2.20), is given by the zone bounded
between the following two curves in the x;-xy coordinate plane (see
figure 2).

blb+cix)-wi(c1-2w)x3 =0

bbtcix;)-wi(c; 2wp)xg
=1 3.14
wo(b+c1x1)x2-Wo(C1-2W1)X1X2 ey

(3.13)

A local diffeomorphic state coordinate transformation, which can
be inferred from the linearized transformation (3.5) takes the average
ideal sliding dynamics into an autonomous stable linear system.

Li=lid+d)  L=tm-wd (3.15)
This transformation coincides with the exact linearization
transformation found by Sira-Ramirez and Ilic {10] and, not
surprisingly, is the same found by pseudolinearization techniques (
sec Sira-Ramirez [11]). The interpretation of (3.13) in terins of total
average energy and average consumed power can be found in {10].
In the new coordinates (3.13), the ideal sliding dynamics is
given by:
: X2+X3 : bX;-w, X3
Er=-ci®r-SL22)  Ey=-or- 02 = 0f
2 2 (3.16)

which is evidently linear, as claimed from the outset.
3.2 A simulation example

A boost converter circuit with parameter values :R=30Q.C=
20uF, L = 20mH and E = 15 Volts was considered for sliding mode
controller design based on nonlinear switching manifolds computed
via extended linearization. The constant operating value of | was
chosen to be U = 0.1619 while the corresponding desirable

|

normalized constant output voltage turned out to be Z7(0.1619) =

0.08. Figure 2 shows several state trajectories corresponding to
different initial conditions set on the ideal boost converter model
controlled by a sliding regime (3.10)-(3.12). The average controlled
state variables, z; and zj, are shown to converge toward the
desirable equilibriunt points. Figure 3 shows the effect of a sudden
step change in the average equilibrium value of the converter output
x5 from 0.08 to 0.2 (the corresponding change in the operating
point of the duty ratio was from 0.1619 to 0.665).

3.3 Buck-Boost Converter

Consider the buck-boost converter model (see figure 4). This
device is described by the following constant bilinear state equation
model :

dx/dt= wgxp -uwexa +ub
dxo/dt = -wpX] - W1X2 + U WoX] 3.17)

where, xy =1 VL, xp=V v C represent normalized input current

and output voltage variables respectively, b = EAL is the normalized
external input voltage and it is here assumed to be a negative quantity
(i.e., reversed polarity) while , wy = 1 /¥ L.C and w;= 1I/RC are,
Tespectively, the LC (input) circuit natural oscillating frequency and
the RC (output) circuit time constant. The switch position function,
acting as a control input, is denoted by u and takes values in the
discrete set {0, 1} . System (3.17) is of the same form as (2.1) ,
withn =0and g=[-wgxo+b wgx) 1. We now summarize the
formulae leading to a nonlinear sliding mode controller design for the
buck-boost model (3.17).

e -Bi

v st conv 1

dzy/dt = wqgzg - L Wozp + Hb

dzp/dt = -wgz) - w1z + UweZ] (3.18)

ili in|

N

1 =U; Z1(U) = bUw/iwe2(1-U)2] ;. Zo(U)= -bU/[wo(1-U)]
(3.19)

Parametrized family of linearized systems about the constant
b/(1-U)

operating points

25,

) [ b Ul 1-U)%) }"‘5
(3.20)

le(t)] =[
with :

Za5(t)
zis (O = zi(1) - ZyU); i=1,2. ; ugt) =p(t) -U.
Transformation of linearized famil .

0
-wo(1-U)

wo(1-U)

d W1

&

_bwU b
Gis | _ wi(1-U)> wi(1-Up?  wo(l-U) [ 28
Las | DA wWiU+U) + w%(l-U))t b bw (1+U) ] 255
wo(1-U)
(3.21)
f; llabl nical form
;18 =Las e
a8 = - wH(1-U)215- wilas + s
in liding surf: i liding d j
state coordinates
odCo) = Las+erlis (3:23)
Cis=- c1lis 5 e1 >0 (3.29)
inear slidin; in original (averag i
=|p +21b¥IU bwi(1+U) b, ] -
s [l”w%(l-U)2 I (@0 wo1-0)) 2 (9.25)
Nonli liding Juivalen| iding n
antl'Q_l_lCl'

S0 = b [x1 - 24U + £ - )]+ S 3 - Z()
o crowi) [x2 - Z(U) = 0 (3.26)

bwo(b+e;xp)-wywolcs-2wi)x3 + bwi(ci-wi)xs

uBQ(x,U)=1-
wob(b+wx1)-wh(b+2wix1)x2 G.27)
u= % {1 +sgns(x,U)] (3.28)
Boundin or ion of existence of a sliding m

bwo(b+eyx)-Wiwo(C1-2w X3 + bwi(ey-wi)xy =0 (3.29)

bwig(b¢iX1)-WiWo(C1-2W1)x3 + bwiler-wiXs _
wob(b+w1x)-wi(b+2wix,)x2

(3.30)
Linearizing local diffeomorphic state coordinate transformation for
average ideal sliding dynamics

13 =-%—[Z% + (zz—‘-vb—o-)l] ; Ea=bzp- WIZZ‘ZZ %’ (3.31)

eal sliding dynamics in transfo: coordi

. X3 +(X, - & :

&= -01{‘51 v—(TL')Z ; Ba=-cib2
(3.32)

]



.4 A simulation example

A buck- boost converter circuit with the same parameter values
as in the previous example, was considered for nonlinear sliding
mode controller design. The constant operating value of pu was
chosen to be U = 0.6508 while the corresponding desirable
normalized constant output voltage turned out to be Z3(0.6508) =
-0.125. Figure 5 shows several state trajectories corresponding to
different initial conditions set on the buck-boost converter model
controlled by the sliding mode based regulator of the form
(3.26)-(3.28). The average controlled state variables, z| and z), are
shown to converge toward the desirable equilibrium point
represented by Z1(U) =0.3773 and Zp(U) = -0.125 Figure 6
shows the ideal average controlled state variables evolution when
subject to a sudden step change in the output desired equilibrum
value, from -0.125 to -0.05 (the corresponding change in the
operating point of the duty ratio was from 0.6508 to 0.4271).

4. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

A systematic approach has been proposed for the synthesis of
faniilies of nonlinear sliding surfaces, parametrized by constant
equilibrium points, defining sliding-mode regulators for DC-toDC

. power converters. The method entities the use of the extended
linearization technique for the specification of the nonlinear
switching manifold. On the basis of the proposed parametrized
nonlinear manifold, one specifies -in a standard fashion- the
associated equivalent control, the required switching strategy and
the sliding mode existence region. One of the main advantages of the
proposed regulator design scheme resides in the "self-scheduling”
properiies of the synthesized controller.

The proposed design scheme exhibits the following features: 1)
The approach benefits from an extensive list of well known
theoretical contributions for design of linear sliding modes, including
efficient computer packages already developed for such design tasks.
2) The possibilities of nontrivial applications can be greatly
enhanced, and carried out, by means of existing algebraic
manipularion systems. 3) The method naturally enjoys rather useful

self-scheduling properties when nominal operating conditions are
abruptly changed. This is particularly important in the field of control
of mechanical manipulators, aerospace systems and other practical
nonlinear control application areas. 4) The method developed in this
article also constitutes an alternative approach, for approximate
linearization of nonlinear systems, to the method developed by
Bartolini and Zolezzi in {12].

As a topic for future work, practical implementation of the
switching regulators can be attempted on a real converter. Also,
automation of the design process via computational algebra
packages, such as MACSYMA, REDUCE, or MAPLE, is strongly
encouraged.
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Figure 1. The Boost converter
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Figure 2. Sliding mode controlled trajectories for the Boost converter
with the region of existence of sliding mode.
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Figure 3. State variables responses to sudden change in the operating
point for sliding mode controlled Boost converter.
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Figure 4. The Buck-Boost converter
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Figure 5. Sliding mode controlled trajectories for the Buck-Boost
converter with the region of existence of sliding mode.
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Figure 6. State variables responses to sudden change in the operating
point for sliding mode Controlled Buck-Boost converter.



