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Abstract In this article, using Fliess’ General-
ited Observability Canonical Form (GOCF), a
dynamical discontinuous feedback strategy of
the sliding mode type is presented for asymp-
totic output tracking problems in nonlinear
dynamical systems. A truly eflective smoothing
of the sliding mode controlled responses is possi-
ble, while substantially reducing the chattering
for the control input. '

1. INTRODUCTION

Asymptotic Output Tracking problems, in
tonlinear dynamical systems, have been exten-
gively studied in the Control Systems literature.
Contributions from a differential geometric
viewpoint are summarized in Isidori’s outstand-
ing book [1], where clear connections are esta-
blished with the concept of the Inverse System,
und the Zero Dynamics.

Recently, Differential Algebra has been pro-
posed by Prof. M. Fliess for the study of non-
lnear controlled systems (See Fliess |[2]).
Among many other deep contributions, Fliess’
remarkable studies have found that smplicit
ordinary differential eguations account for a
more general, and enlightening, setting from
vhich a unified treatment is possible for basic
control  theoretic concepts.  Within this
viewpoint, generalized canonical forms, for
inear and nonlinear controlled systems, are
introduced which explicitly exhibit time deriva-
tives of the control input functions on the state
snd output equations.
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Section 2 of this article presents the
asymptotic output tracking problem from the
perspective of Dynamical Variable Structure
Feedback Control. The proposed control scheme
is based on Fliess’ Generalized Observability
Canonical Form (GOCF) [2]. The approach
represents a viable feedback alternative exhibit-
ing attractive features such as robustness and,
more importantly, certain degree of  input-
output smoothness, dependent upon the relative
degree of the system. The approach is especially
suitable for controlling some electro-mechanical
devices (See Sira-Ramirez et al [3]). In section 3,
we present, along with computer simulations, an
application example that illustrates the advan-
tages of the proposed controller for a DC-motor
angular velocity tracking task. The concluding
remarks, and proposals for further work, are
collected in Section 4.

A different approach to dynamically gen-
erated sliding regimes, has been presented by
Fliess and Messager in [4].

2. ASYMPTOTIC OUTPUT TRACKING
VIA DYNAMICAL VARIABLE
STRUCTURE FEEDBACK CONTROL

The following proposition is quite basic in
the developments presented in this section:

Proposition Let z and W represent strictly
positive quantities and let "sgn" stand for the
signum function. Then, the scalar discontinuous
system:

(2.1)

globally exhibits a sliding regime on w =0,
Furthermore, any trajectory starting on the ini-
tial value w = w(0), at time t = 0, reaches the
condition w = 0 in finite time T, given by:

w=—pw+Wsgnw)



| w(o
w

T=u? In|l +

Proof Immediate upon checking that globally:

w v < 0 for w » 0, which is well known con-

dition for sliding mode existence (See Utkin [5]).

The second part follows easily from the linearity
of the two intervening system "structures".

Let « be a strictly positive integer. Con-
sider a nonliriear dynamical system expressed in
Fliess’ GOCF [2):

=1,

My =13

. (2.2)
Na—1 = My

i?n = (n! u1 l:lY""u'(a))

y=m

Under rather mild conditions, any analytic
nonlinear system, given in the traditional Kal-

man state variable representation, X —Flxu ,
dt '

y = h(x), can be transformed to Fliess’ GOCF
by means of a suitable input-dependent state
coordinate trausformation (see Conte ef al [6]).
Notice that the integer & in (2.2) is intimately
related to the relative degree r of the system [1]
by the relation: « = n-r. Hence, o coincides
with the dimension of the zero dynamics.

Define a tracking error function e(t) as the
difference between the actual system output y(t)
and a desired output reference signal yp(t):

e(t) =y(t) - yr(t)
We then have:

(2.3)

0=<isn-1 (24)
e{mu,u,.. )“( )) gt?.S)

eM(t) = 74y —yR(b) ;
et} =y -y (6) =c

Defining ¢; = el (i = 1,2,...,n), as com-
ponents of an error vector e, we may also
express the tracking error system (2.4)-(2.5) in
GOCF as:
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e =€y

€g = €3
(26)

€p-1 = €y

€y = C(&R(t) + €, \l,fl,.. ’u(a)) -V l‘)(‘;)

e=e

with:

én(t) = col ya(t), ROy R0

2.4)

e = col{ey,€p,...,€p)

Suppose that the asymptotic equilibrium
point of the controlled tracking error system
(2.6), for some suitable control input strategy, is
given by e; = ey = +++ =e, =0. Hence, under
such an equilibrium condition, i.e., under perfect
tracking, the system exhibits the following
"remaining dynamics” or "inverse dynamics":

e(&r(t), v, {lv"')u(a)) =Y n)(t) (2'8)

The stablhty features of (2.8) for reference
signals ygr(t mhxch are bounded with bounded
derivatives, yg'(t) (i=1,2,..,,n) also determine,
to a large extent, the physical realizability of
any tracking control strategy which asymptoti-
cally achieves the perfect tracking condition
e=:0. We assume that the solution u of (2.8) is
defined for all times, and is bounded for all
bounded input functions yg(t) which also exhibit
bounded derivatives.

Let the set of real coefficients {mg,...,m,3}
be such that the followmg polynomial, in the

"

complex variable "s", is Hurwitz;
s 4 my_ps" 2 4+ c o c 4+ mys +mg (2.9)
Consider now an auxiliary scalar output

variable w, defined in terms of the output track-
ing error coordinates ¢ (i=1,...,n) as:

n .
W=y, mi_le("l)

i=]

n
= E m;.1€ 3 with Mg =]

j=1

If we impose on the evolution of the auxili-
ary output variable w, the discontinuous dynam-
ics considered in (2.1), one obtains, from (2.6)
and (2.10):



n-1
We=éy + ) migey
i=1

n n
=—p Y my_se; +Wsgn| Y mi—lei] (2.11)
i=1 i=1

Using (2.5) ome obtains the following
dynamical feedback controller in terms of an
tmplicit ordinary differential equation with
discontinuous right hand side: :

n-1
‘(fﬂ +e u»“:---)u(a)) = }’g) - 2 m;_€41
i=]1

—# i) mj.se; + w ssn[i mi-—lei] (2.12)
i=1 i1

On each one of the regions w >0, and
w <0, a different feedback control "structure" is
generated by (2.12) and the corresponding impli-
¢lt differential equation is to be independently
solved for the controller u, on the basis of
knowledge of the error vector e and the vector
of functions £g(t). Under the additional
assumption that, locally, d¢/dul®) is non zero in
(2.12), then no singularities, of the smpasse
points type (Fliess and Hasler [7]), need be con-
sidered. Moreover, by virtue of the implicit
function theorem, controller equation (2.12) is
then locally equivalent to an ezplicit system of
first order discontinuous differential equations
which can be solved on_line with no further
difliculties than those involved in, say, a dynam-
feal sliding mode observer system acting in a

tlosed loop scheme,
It follows from (2.6)(i (2.10) and the invari-
w

ance conditions w = 0; —— =0, that the ideal

sliding dynamics [5] is non-redundantly given by:

é =¢
& =e;
(2.13)
. n-1
€1 =— ) mj_1€ .
i=1

which exhibits an asymptotically stable motion
toward the origin of the error vector coordi-
nates, with eigenvalues uniquely specified by the
prescribed set of constant coefficients
{mq,...,my_s}. In particular, the output track-
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ing error function e, =1; —yg(t) asymptotically
converges to gero, as desired.

Remark Two important advantages can be
readily established about the dynamical variable
structure controller represented by (2.12). The
first one is the fact that the output tracking
error function e(t) asymptotically approaches
zero with substantislly reduced, or smoothed
out, "chattering”. Secondly, and this is possibly
the most important advantage of the approach,
a traditional explicit canonical phase variable
representation for the dynamical controller
(2.12) indicates that the control input u is the
outcome of « integrations, performed on a non-
linear function of the discontinuous actions that
lead the auxiliary output w to zero. This
implies substantially smoothed control inputs
which do not result in a "bang-bang” behavior
for the actuator.

3. AN APPLICATION EXAMPLE

The following nonlinear dynarﬁical model
of a field controlled DC-motor is taken from
Rugh [8, pp. 98].

. R,
X1 -“—"‘—rxl'—f‘—qu-FL—‘

(3.1)
x2=——Tx2+Tx1u

Where x; represents the armature circuit
current, xp is the angular velocity of the rotat-
ing axis. V, is a fixed voltage applied to the
armature circuit, while u is the field winding
input voltage, acting as the control variable.

Suppose yg(t) is a known, desired, bounded
reference trajectory for the angular velocity x,
considered as the output function. One can
obtain a GOCF for the dynamics of the tracking
error e=xp; —yg(t), by defining a time-varying
input dependent state coordinate transformation
of the form:

€ =Xg — }'R(t)
ey = — —=— Xg -+ ‘}ixlu —y.R(t)
J J
Xo =¢€; + YR(t)
J ) (3.2)
xl == -Ial- ez + T (el + )'R(t)) + 9R(t’)
yielding: ‘



él = e
by m = 7 e () = (B + e +i()
b - By bt ()

+ -E es + % (e1 +yr(t)) + yr(t)| - ¥r(t)

e=e

Notice that u=0 corresponds to a singular-
ity of the transformation (3.2) and, hence, sta-
bilization or tracking tasks that imply polarity
reversals in the field winding input voltage must
be treated by different techniques which imply

inducing appropriate "jumps”, or discontinuities, -

in the input variable u or in some of its time
derivatives (see Fliess et al 9]).

Since the problem of smoothly transferring

constant operating angular velocity,
YR t; ={) to a new constant reference value,
r(t)=0*, eventually entitles the need for a
controlled stable steady-state operation, we first
study the stability features associated to the
tero dynamics of system (3.3) when yg(t) is a
nonzero constant of value, say, {1

the

The zero dynamics, is easily obtained from
(3.3) as:
Kv, 2

R, s K 4. .
E-U'l'mu *rju +u-—0(3.4)

The constant equilibrium points u = U of
(3.4) are obtained from the solutions of the fol-
lowing third order algebraic equation:
KV
—Q' w—-Kiuw=0

One of the possible solutions of (3.5)
corresponds to the singular equilibrium solution
u=0, which is, hence, discarded. The two
other solutions of (3.5) are given by:

V.K
20 |!

—~RBu+ (3.5)

R.BOE

= Ve (3.6)

* 1—-4

If the discriminant D :=V2 — 4R, BQ? is
negative, then there is no real solution to the
stabilization problem. If, on the other hand, D
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is gero, or positive, then there are two real, posi-
tive, roots for u in (3.5). The stability proper-
ties of these equilibria may be directly deter-
mined via approximate linearisation of (3.4).

Linearisation of the zero dynamics (3.4)
around the equilibrium point u = U yields:

1 2%y .
BL, (R,B —K*U*)u; =0
where us:=u—U represents the incremental
field circuit input voltage. The linearized xero
dynamies (3.7) is evidently asymptotically stable
to zero, provided the constant equilibrium input
voltage U satisfies the condition:

R,B > K?*U? (3.8)

which identifies, together with the condition:
V2 = 4R,BQ?, the minimum phase region in
the input-output space for the given system
(3.1). The operating equilibrium points, { and
Q*, associated to the smooth angular velocity
transfer maneuver, defined via a suitably pro-
posed tracking problem, must then be tested,
via the corresponding values U and U obtained
from (3.6), against condition (3.8). This will
asses the stability of the corresponding sero
dynamics on the involved equilibria.

Consider the auxiliary output variable w,
written now in terms of the tracking error velo-
city and acceleration error variables, as it was
defined in (2.10):

W = eg -+ Mge;

ug +

(3.7)

(3.9)

Imposing on w the discontinuous dynamics
given in (2.1),.a time-varying differential equa-
tion for the dynamical controller is obtained
which synthesizes the control signal u, in terms
of the reference input signal yg(t), its time

derivative and the tracking error vari-

ables e; and e;. Writing, however, the variable
structure dynamical feedback controller in terms
of the original state coordinates x; and x; of the
controlled system (3.1), one obtains

. J | B .B

U+ KXL, {— 'JT+ T (ﬂ+mo)"l‘mo]xz

V.K K? _ o

JL. u+4 EXQH

05
T

-+

B R.
T+L—.—p-—mo]x,u—-



+ pogyg (t) + (4 + mg)yr (t) 4 ¥r(t)

—yWsign[(— % +1mg )%y + %x,u

~moya(t) - Fn 1) (3.10)

Simulation Results

Simulations of a tracking task were per-
formed for a DC motor with the following
parameter values;

R, =7O0hm; L, =120mH; V,=5YV;

A desired output reference trajectory yg(t):

was considered which allowed for a smooth tran-
sition from a nominal (equilibrium) angular
velocity {2, to a new chosen operating angular
velocity {¥*. Such reference function was set to
be:

Dfor 0 <t <ty i
t)= +
YR O* (2~ ) exp(—kt?) for t>t1;(k%l(]

Figure 1 portrays the time response of the
dynamical sliding mode controlled angular velo-
city. The dynamical variable structure con-
troller smoothly leads the angular velocity from
1=300rad/s to a new operating value
0* =200 rad/s. The parameters of the induced
dynamics (2.1) were set as: =100, W=10,
mg=20. It may be verified that, according to
the chosen values of the parameters, the initial
and final angular velocities are located on the
minimum phase region of the system. Time t;,
and the constant k, in (3.7) were set, respec-
tively, as t; =0.5 s and k=3. Figure 2 portrays
the time response of the armature circuit
current for the transition maneuver, while Fig-
ure 3 shows the corresponding control input vol-
tage trajectory exhibiting almost no chattering.

4. CONCLUSIONS

Dynamical Variable Structure Controllers
accomplishing asymptotic reference output
tracking are readily. obtainable for nonlinear sys-
tems described in Fliess’ Local Generalized
Observability Canonical Form. Such a canonical
form naturally leads to a dynamical sliding
mode controller which zeroes, in finite time, an
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auxiliary output function defined in terms of the
tracking error time derivatives. The resulting
ideal sliding dynamies induces an asymptotic
stabilisation of the output tracking error fune-
tion with eigenvalues totally prescribed at will.
The obtained discontinuous controller design
exhibits the advantage of effective chattering
reduction for both the input and output signals,
without resorting to the well-known high-gain
amplifier alternative (see Slotine and Li [10]).
The approach, however, requires full state feed-
back and it entitles dealing with the complexity
of nonlinear time-varying implicit dynamical
controllers, which may not be globally defined.
Some of the associated difficulties include the
presence of impasse points, or the operation of
the controller in a region of non-minimum phase
characteristics. In such pathological cases, the
usual remedy indicates the use of discontinuities
in the control signal. The difficulties have been
properly addressed with desirable results in (9].

It should be stressed that using time-
varying, input-dependent, sliding surfaces, the
discontinuities associated to the proposed
dynamical sliding mode control strategy take
place in the state space of the dynamicael con-
troller and not in the state space of the system
itself. This fact makes possible the application
of sliding mode control techniques to areas
where they were not traditionally feasible, such
as: chemical process control, biological systems
control, and the regulation of mechanical and
electro-mechanical systems (see also [3]).

In this article a nonlinear DC motor exam-
ple, dealing with smooth controlled transitions
of nominal angular velocities to new constant
operating values, was presented along with
encouraging simulation results. As topics for
further research, the dynamical variable struc-
ture feedback controller here proposed could be
implemented in an actual DC-motor using non-
linear analog electronics.
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Figure 1. Angular velocity response for
dynamical sliding mode controlled
tracking task.
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Figure 2. Time response of armature circuit
current for angular velocity tracking
task.
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Figure 3. Control input voltage to field wind-

ings circuit for angular velocity
tracking task.



