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- Abstract. Dynamical controller schemes, based on differential algebraic results, are proposed for the feedback regulation
of some typical aerospace systems. The nonlinear dynamical feedback controllers are synthesized on the basis of Fliess’
Generalized Observability Canonical Form (GOCC) for the regulated system. The synthesis approach is also applicable to
Nonlinear Pusle-Width-Modulation (PWM) controlled systems, commonly encountered in aerospace control problems.
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1. INTRODUCTION

A new and general approach for the study of controlled
dynamical systems, based on Differential Algebra, has been
recently introduced by M. Fliess in a series of remarkable articles
[1]-[3). This approach was shown to be suitable for the unified
treatment of linear and nonlinear, lumped, or distributed, controlled
dynamical plants. Feedback decoupling, invertibility, model
matching and realization, have also been conceptually clarified and
generalized by Fliess via this powerful and most elegant approach.
Crucially based on the extension to differential fields of the
Theorem of the Primitive Element [4], any controlled dynamical
system, described by a set of forced ordinary differential equations,
was shown to posses a Generalized Controller Canonical Form
(GCCF) exhibiting the input and a finite number of its time
derivatives. By obtaining an input-output description of the
dynamical system (see also Conte et al [5]), one may directly
derive the Generalized Observability Canonical Form (GOCF).
The GOCF coincides with the GCCF when the given state
realization is minimal and the output variable qualifies as a
differential primitive element. Such canonical forms are obtainable,
in general, by means of control-dependent state coordinate
transformations. As a direct consequence of this result, the problem
of feedback linearization and that of input output linearization of a
controlled dynamical system is always trivially solvable, in a local
manner, using nonlinear, possibly time-varying, dynamical
feedback. The linearizing dynamical compensators are clearly
suggested by the canonical forms themselves. However, for
systems with constant opcrating points, the asymptotic stability of
the linearized closed loop dynamics, around such an equilibrium
point, crucia]l?' depends on the minimum phase character of the
nonlinear F about such an equilibrium.

In this article dynamical feedback controllers, based on
Fliess' GOCF, are proposed for three typical examples of
aerospace control problems. As a first example, a variation of
Zermelo‘s problem is presented for an aircraft attempting a
perfectly circular (tracking) maneuver in a region of strong air
currents (Bryson and Ho [6]). In this example, the control actions
related to the heading of the aircraft are assumed to be continuous.
A second example, already reported in Sira-Ramirez [7], is also
briefly summarized here. This example deals with the problem of
robust soft controlled landing, for a thrusted spacecraft, on the
surface of a planet provided with atmospheric resistance, using a
dynamical O —OFl?PWM control strategy. The third example is
constituted by a controlled orbital transfer for a multivariable
jet-controlled space vehicle (Brockett [8]) using an ON-OFF-ON
PWM control strategy. In the last two cases, the dynamical
fecdback regulator design is based on a suitable average model for
the PWM controlled system and the smooth designed behavior is
then closely approximated by the actual PWM controlled behavior.

Section 2 presents some general results and derivations about
dynamical feedback linearizing controllers using Fliess' GOCF.
Section 3 presents the three application examples, described
above. Simulations are included to illustrate the performance of the
proposed controllers. The Appendix contains some background
material on the ON-OFF, as well as on the ON-OFF-ON, PWM
control of nonlinear systems and their design oriented average
models.

This work was supported by the Consejo de Desarrollo Cientifico,
Humanistico y Tecnolégico of the Universidad de Los Andes under
Research Grant 1-325-90.

2. FLIESS' GENERALIZED OBSERVABILITY
CANONICAL FORM OF NONLINEAR
SYSTEMS

In this section, Fliess' GOCF for nonlinear dynamical
systems is presented for the sake of self-containment. The results
are also found in Fliess [3].

2.1. Fliess' Generalized Observabllity Canonical Form for
Nonlinear Systems and Exact Dynamical Feedback
Linearization.

An n-dimensional, minimal, realization of a nonlinear

« dynamical system, given in state space form :

X = F(x,u)
y=h(x)

can be locally placed, under rather mild conditions, in Generalized

@1

" Observability Canonical Form (GOCF);

%QF‘IM pi=12,n-1
ad{%=0(q,u,li,ii,...,u(v)) @2
y=q

by means of an input-dependent locally diffeomorphic state
coordinate transformation [5]. In the language of differential
algebra, the state representation (2.2), in generalized phase
coordinates, is always obtainable when the output variable y
qualifies as a differential primitive element.

Exact input-output dynamic feedback linearization is simply
achieved by equating the expression in the last differential equation
to a (stable) hinear equation'in the components of the vector q,

possibly including an external reference input signal +, as follows:

c(quii, - ul") = ~0uqi-tagy- -+ ~Ongt ke (23)

The last equation implicitly defines a dynamical nonlinear
state feedback control law which accomplishes an exact
linearization of the non-redundant dynamics. The obtained linear
system has preestablished asyniptotic stability properties chosen by

means of the o's. .

It is evident that the nonlinear dynamical feedback
linearization scheme presented above is based on exact cancellation
of the nonlinear plant dynamics by means of the proposed
controller. By means of a straightforward linearization around a
constant equilibrium point -if any- of the combined GOCF and of
the proposed dynamical feedback controller, one can easily.
demonstrate, in the single-input single output case, that the closed
loop system is locally asymptotically stable if and only if the
linearized transfer function of the given plant is minimum phase
i.e., if the linearized zero dynamics is asymptotically stable. The
corresponding statement for multi-input systems is also valid.
However, in this case, it has been shown that there exists three
possible, nonequivalent, extensions of the concept of zero
dynamics ( Isidori and Moog [17]).
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3. SOME AEROSPACE APPLICATIONS.

3.1. A Dynamically Controlled Circular Path Maneuver for an
Afrcraft flying Through a Region of Strong Winds

An aircraft must fly through a region of strong air currents
whose magnitude and direction are only nominally known as
functions of position : h =h(x,y) , v = v(x,y), where (x,y) are rec-
tangular coordinates and (h,v) are the velocity components for the
current in the x and y directions, respectively. The magnitude of the
aircraft's velocity, relative to the air, is assumed to be a constant V.
The problem consists on maneuvering the aircraft along a circular
Path of egiven radius R. The nonlinear model describing the
controlled motions is (see Bryson and Ho [6, pp. 96 ] ):

Xx=Vcosu+h(xy) ; y=Vsinu+vixy) 3.1

where the scalar parameter u, acting as the control input, is the
heading angle of the aircraft's axis relative to the fixed coordinate
axes and (x,y) represents the position of the aircraft. The control
angle u takes values in the real line. This unlimited control action is
to regulate, in a smooth manner, the motions of the spacecraft
toward the required path and then sustain the circular trajectory.

Defining a tracking error as: s(x,y) =x2+ y2- RZ, then, the
problem of sustaining a circular trajectory in the (x.y) plane is
translated into the problem of zeroing the nonlinear output function
s(x,y) associated to the nonlinear dynamical system (3.1).

We proceed to derive a nonlinear dynamical feedback
controller for the required maneuver.

It is easy to verify that q := s(x,y) is a differential primitive
element that allows one to write the model (3.1) in a GOCF of the
.form (2.2) with v =1. Thus, denoting by h, , hyand v, , v, the
partial derivatives with respect to x and y, of h and v, respectively,
one computes the time derivatives of the primitive element q as:

q=s(xy) = x2 +y2-R2; q=V(xcosu+ysinu)+xh+yv
§= V2 +2V(h cosu + v sinu}+ 2+ v2 +1i V(y cosu - x sinu)

+ (xhy + yvx )(V cosu +h) + (xhy + yvy )V sinu + v)
3.2)

where the arguments (x,y) have been dropped in h and v just for
notational convenience.

The controller design is based on imposing, for the exactly
linearized GOCF, an asymptotically stable dynamics, with
suitably chosen eigenvalues (say, real and negative) a; <0, a; <0,
as follows:

g -(@+a)q+(ma)q=0 (3.3)

The nonlinear dynamical feedback controller accomplishes
any desirable exponential rate of decay on the tracking error q, as
well as on its first time derivative dg/dt. Such a nonlinear
dynamical feedback controller, is immediately obtained from (3.2)
and (3.3) as:

du______ 1 ke i
@ Viy cosu xsinw) (V +2V(hcosu +v sinu)

+h24v2 + (xhy + yvx XV cosu +h)
~ @+ V (xcosu+ysinu)+xh+yv]
+a13) (x2+ y2-R24 (xhyyvy XV sin u+v) }
(3.4)

Computer simulations were carried out on the system
(3.]),(3.4).1g1e radivs of the circular path was chosen as R = 300
m, while the aircraft velocity was set to V = 110 m/s. The poles for
the linear system were both located at -1 + jO. The functions h(x,y)
and v(x,y) were nominally chosen as constants of values he= 10
m/s and vo = 40 m/s (i.e., a wind current with fixed magnitude of
41.23 m/s and direction of 75.96 © with respect to the x axis).
However, a large unmodelled wind gust perturbation, distributed
around the point (x,y) = (0,-R) of the circular path, was included in
the simulation of the system model (3.1), but the corresponding
expression for the perturbation function was never substituted on
t}}e dei_igned controller (3.4). Such perturbation was assumed to be
of the form :

vixy) =vo {1 +exp(—[($)’+{a%oi )zm 3.5)

Figure 1 shows a computer simulated trajectory in the plane
X,y , depicting the response of the dynamical feedback controlled
maneuver under nominal and perturbed conditions for v(x,y)..
Figure 2 compares the time responses of the distance error to the
required circular trajectory for the perturbed and unperturbed
controlled systems. This error was defined, just for numerical

convenience as compared to s(x,y), as: e(x,y) = (x2+y)1/2_R.

3.2 Dynamically Controlled Soft Landing Maneuver on a
Planet Including Atmospheric Resistance.

The nonlinear dynamical model describing the vertical
descent, of a thrust controlled vehicle, on the surface of a planet of
ravity acceleration g and non-negligible atmospheric resistance
orce opposing the vertical downwards motion (sec Arnol'd [9,

p.4]) is given by.

dx; _ Cdg o (YY) 2 feay, . dx3
E 3 IR (i?)"z &) G- au(:se)

where x) is the position (height) on the vertical axis, chosen here to
be positively oriented downwards (i.e., x; <0, for actual positive
height), x;is the downwards velocity and xj represents the
combined mass of the vehicle and the residuat fuel. The function u
is a binary-valued control function with valucs in the set { 0,1 }
regulating, in a pulsed or bang-bang manner, the constant rate of
ejection per unit time a and effectively acting as a control
parameter. The constant ¢ represents the relative ejection velocity
of the gases in the thruster. Thus, oot is the maximum thrust of the
braking engine, while y is a positive quantity representing the
atmospheric resistance coefficient.

The binary-valued control signal u is assumed to be
synthesized on the basis of a PWM control strategy specified by :

1 fortg <t S+ plx )T
u= . RO ot @)

0 for ty + p{x(t)]T « t < ty+T

where p(x(t)) is the duty ratio function generated in a feedback
manner from knowledge of the sampled state vector x(t) at time t,..
The feedback synthesis problem is then defined as the problem of
specifying a suitable duty ratio function y, in a fecdback manner.
We shall base our design on the average model of continuous
nature for the PWM feedback controlled system (3.6),(3.7) as
developed in the Appendix.

A soft landing on the surface x; = 0 may be seen as a

- particular case of a controlled descent toward a sustained hovering

about certain preestablished height x; = K. Usually, the landing
maneuver entitles a regulated descent toward a small height
(typically 1 m, or so, i.e. K =-1) on which a short hovering
takes place before the main thruster is safely shut off. The final
touchdown stage is actually a free fall toward the surface from the
small hovering height. Taking the output function of the system as
y = h(x) = x;- K, the problem of sustained hovering is translated
into the problem of zeroing the output y associated to the
nonlinear system (3.6).

According to the results of the Appendix, the average PWM
controlled model of the vertical descent of the controlled spacecraft
is given by:

do _, . dp_ _(l) 2 _ foa)y, . Y
PR A Rl Py b 23)“' a@ C oo

3.8)
y=7-K

where |L is the duty ratio function, satisfying the limiting
constraints 0 «< i < 1, acting as the piece-wise smooth control
parameter to be designed in a dynamical feedback manner.

Remark 1 It is easy to see that, during the controlled descent, the
downwards acceleration is always bounded above by zero (see
Sira-Ramirez [7] ).
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It may also be easily verified that q; =z, - K is a differential
primitive element of system (3.8). Thus, a control-dependent state
coordinate transformation of the average PWM controlled system
(3.8) which leads to a GOCF of (3.9) is given by :

2
+ 60
="K, q=2, q3=s—122—z;—"

2 3.9)
7= +K, 25=q, 3= Ezg%
- from where:
Y di1=q
©=B , (10
X 2Yq,8 + GOy
@=- (8“13{%{} (2v -aul[%‘b)—
g3 + ooy 195 + 6oy
Yy=q

The following input-derivative-dependent control space

- coordinate transformation exactly feedback linearizes to

Brunovsky's Observable Canonical Form the transformed system
(3.10):

0 2
vz - (g-q3 M +(2m-ap) —(g—_q3)—-(3.11)
Yaf +oap g3 + oo

The exactly lincarized system is now easily stabilized around the
origin of transformed coordinates by a standard linear

state-feedback controller of the form v = - a,q; - 05q2 - 01393,

with suitably chosen coefficients o, &, , and o, The dynamical

feedback controller synthesizing the computed duty ratio
(henceforth denoted by p) accomplishes, within non saturating
conditions for the actuator's duty ratio values, any desirable
exponential rate of decay on the height, vertical velocity and vertical
acceleration variables. Such a dynamical feedback controller,
yielding the computed duty ratio p is immediately obtained from
(3.11) and the linear expression for v:

|

2 S 2
" +6 : ~| (- 2
L= BT loyg; 4 oggp oy + 2%12-!!#)[3;—%)7] -
oc g-q3) W)+ o)
(3.12)

Notice that no singularity is implied by the presence of the
factor (g- q3)-! in (3.12) due to the established negativity of the
vertical acceleration g3 during the descent maneuver (sce Remark
1). In original average coordinates, the dynamical feedback
controller is given by :

4= 2oz -K+ am+as (g- B
3.13)
2 -~ .
S 2
+(2wq—w)(m2:%—ap ]"ZT%

The actual duty ratio function p is obtained by properly
limiting between 0 and 1 the values of the computed duty ratio
function p , obtained as a solution of the nonlinear time-varying
differential equation (3.13).

A hovering condition on y = 0 implies a zero equilibrium
point for the position, vertical velocity and vertical acceleration in
(3.10). As it can be easily scen, from (3.13), the (zero dynamics)
hovering condition: q; = q; = q3 = 0, entitles an exponentially
asymptotically stable autonomous trajectory to zero for the total
mass behavior. Thus, the equilibrum point of the zero dynamics is
not dphysically meaningful. As a matter of fact, since the fuel mass
is depleted in finite time, the average model (3.8) becomes
unrealistic after the fuel mass has been exhausted. In spite of this
fact, the controlled descent toward the surface can still be
practically performed at the expense of sustained fuel mass
expenditure within an allowable safety limit in the hovering
condition. The final free fall descent, from the hovering position,
via switching off of the main engine, must be performed so as to
lguarantee enough residual fuel for the ascending maneuver, if any,
ater on.

Simulations were performed for both the average and the
discontinuous controlled landing models discussed above, with the
following constant parameters:

6=200 [mss] ; o= 50 [Kgfs];
g=372[m/s?) ; y=1 [Kg/m]; K=-1[m]

The three poles of the exactly linearized closed loop system
were located at -1.2 s 1. The sampling frequency for the PWM
actuator was set at S samples per second, 1.e., T=0.25 Ona
planct with the given physical constants, the free fall limit velocity
18 51.03 [m/s] which was taken as the downward velocity initial
condition for the simulation. Figure 3 shows the evolution of the
actual PWM controlled state variables x;, x and x3 (height,
vertical velocity and total mass). Initial conditions were chosen,
from a free fall condition, at:

x1(0)=-500 [m]. x(0)=51.03 [m/sec], x3(0)=700 [Kg}

The obtained actual PWM trajectories exhibit a negligible
difference with respect to the cormresponding average PWM
responses. Robustness of the controller performance, in the
presence of unmodelled spatial perturbations in the coefficient of
atmospheric resistance, was evaluated in Sira-Ramirez [8] by
performing an experiment similar to the one presented in the
previous example.

3.3. Dynamical PWM Feedback Controlled Orbital Transfer
Maneuver

A well known model for a normalized (unit) mass spacecraft
rforming a controlled orbital transfer is given by (see Brockett
7, pp.14), and, also, Bryson and Ho [6, pp.66] ) :

f=v;v=re?-Kiu;e=-220 .1y, @14
1'2 T I

with r being the radial distance of the spacecraft from the center of

the earth, v is the radial component of the velocity, @ is the angular -
velocity, k is the earth gravitational constant, and u; and uy"
represent, respectively, thrust in the radial and tangential directions.

The orbital parameters are constrained to satisfy, in steady state -
equilibrium conditions: r = R, @ =Q , u; = u; = 0, the relation -
R3Q2 = k. A PWM ON-OFF-ON control policy, such as that

described in (A.6),(A.7), is assumed for each thruster. The control '
inputs u; and uj take values, respectively in the discrete sets {+U),

0, -U; } and {+U,, 0, -U; }. We summarize below the steps

leading to a PWM dynamical controller design based on the

average PWM model of the given multivariable system.

Average PWM Model
i=v;v=rm2—k2+U1p1; '=—2%‘9-+};Uzp2
T (3.15)
i jli i verage PW|

Mode}

Taking as the output variable y =r- R, it is easy to see that
q) =Yy qualifies as a differential primitive element on the basis of
which we can generate a GOCF for (3.15):

Gi=gier s i=12
- 3-Uim k Ui,k
@=-3¢q + +2Uz Gyl G
W+R (g4 RS wR o (qeRp
+——2Lq2—+U)}‘l1
{ar+ RP
y=q
(3.16)
verage ics

41=9: @2=q3; P=-q1 -0 g -03q3 ; Y=q;
.17

namical Average dback Controller Synthesizi

Unrestricted Computed Duty Ratios

Equating the last state equations in (3.16) and (3.17) leads to *
a time-varying differential equation for p; with an indeterminate
quantity represented by the duty ratio function 1, . This duty ratio
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function can thus be independently chosen. We pmi)ose touse a
Mg which exactly linearizes, to an asymptotically exponentially
stable dynamics, the last equation in (3.15).

43 =_°ﬂ_‘l%‘iﬂma_+_3ﬂz[m+_k__]
1 i

Ul a+R (g +RP
e [ @i, g kg
Ui a+R (g +RY  Ujq+RP
M= +R +[ - 04 +R)] M+_k_
) Uz‘\,RIJ (g +R) U, eSSy
(3.18)

The dynamical controller specifying the computed duty ratio
W is synthesized on the basis. of achieving an average
asymptotically stable behavior of the orbital radius error q; = r-R.
The non-dynamic feedback controller specifying the computed p,
yields an asymptotically exponentially stable motion toward the

corresponding constant angular velocity : €2 = (k/R3)!72. (i.e., the
desired dynamics for @ is imposed as : do/dt = —04(@ - Q). The

exponential rate of decay of & is thus specified by 4. The actual
duty ratios pj and p are obtained constraining the solutions p;, iy
of (3.18) to the closed interval [-1,1].

A computer simulated experiment was also carried out to

* illustrate the quality of the response obtained with the designed
discontinuous dynamical feedback controller. The radius of the
earth was taken as 6371Km and the gravity constant k, for such
magnitude of heights, was set to k = 389258.1 Km3/s2. Initial
conditions were taken for a circular orbit located some 150 Km
_high above the surface of the earth (orbit data : r=6521 Km, v=0

Km/s, ® = 1.1832 x 10 =3 rad/s ). A controlled maneuver was
performed which brought the spacecraft to a second orbit of 175
Km of height (orbit data : r = 6546 Km, v = 0 Km/s, = 1.1780 x
103 rad/s). The three poles of the linearized system were located

at- 0.1 s -1, Figure 4 shows the time response of the radius and
the angular velocity for the orbital transfer of the spacecraft.

4. CONCLUSIONS

Synthesis of nonlinear dynamical feedback regulators, based
on the differential algebraic approach to controlled systems
dynamics, has been carried for some typical aerospace problems.
In spite of the exact linearization involved in the determination of
the dynamical fecdback policies, the simulation results demonstrate
certain degree of robustness of the obtained control schemes with
respect to unmodelled disturbances. Moreover, the synthesis
approach was seen to be suitable for either continuously or
discontinuously (PWM) controlled plants. In the second case, an
infinite frequency average model transforms the discontinuous
controller design problem into a problem of continuous nature. The
average solution was shown to be approximated, in an arbitrarily
close manner, by the discontinuous control policy provided a
sufficiently high sampling frequency is used.
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APPENDIX

A.1 Generalities about ON-OFF Pulse-Width-Modulation
Control of Nonlinear Systems

Consider a single input nonlinear dynamical system defined
on an open set of R described by:

x= f(x,») (A1)

with & a discontinuous fecdback control strategy of the PWM
type, given by :

»H(x) for t «t < ti+ px(t)]T
o= ; k=01.2,..(A2)

»7(x) for ty + p[x()JT « t S tx+T

where T is a fixed sampling period also known as the duty cycle, t

is the k-th sampling instant and u(x(t)) is a continuous piece-wise
smooth feedback function known as the duty ratio function

. determining the variable structure feedback control pulse width

during the ongoing inter-sampling interval [ty 4, +T]. The pulse
width p(x(t,))T is determined at the beginning of each sampling
interval t, on the basis of the value of the state vector at such
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instant ( schemes on the basis of an output function or output error
are also possible ). The continuous piece-wise smooth duty ratio
function 1s assumed to be bounded by 0 < u(x(1)) <1 forallt.

The effect of such a discontinuous fecdback strategy on the
controlled state trajectories is to produce a zig-zag motion, very
much reminiscent of actval Sliding Mode Controlled trajectories
(Utkin [10] ) . The analysis and design of such class of hybrid
systems (A.1)-(A.2) is extremely difficult and can only be carried
out in an approximate manner. However, the inconveniences of the
nonlincar discrete-time approximations can be eliminated if some
smiooth continuous average model is adopted as an approximation
for the actual PWM controlled system. Such a smooth average
behavior may be considered on the basis of a hjgh_sgm_p_lmﬁ
freauency for systems which are relatively slow as compared wit
such fast control changes. In the following paragraphs we justify
the use of an average continuous model based on an infinite
sampling frequency assumption for (A.1)-(A.2). The advantages of
such an averaging procedure, aside from some intimate connections
with Sliding Mode Control (see Sira-Ramirez [11]-[13]), lay in the
possibility of using modern nonlinear feedback control design

techniques for the synthesis of the duty ratio function.

Furthermore, the smooth average designed behavior can be
arbitrarily closely appmximatecf by the actual discontinuous
feedback controlled trajectories as the sampling frequency of the
PWM actuator is suitably increased within finite bounds.

Let f(x,»*(x)) = X*(x) and f(x,» (x)) = X-(x). It is easily
‘seen that the discontinuously controlled model (A.1),(A.2) is
equivalent to the following switch controlled model:

€K = X1 + (1= w) X (0 = X + [X*00 - X0 u
= (x) + g(x)u a3

with:
1 for tg <t S tie+ uIx(t)]T
Ut # k=012, (A4)

0 forty + p[x(t)IT < t S{+T

Decfinition A.1 An average PWM model for the discontinuously
controlled system (A.1)-(A.2) ( or equivalently (A.3), (A4) ) is
defined by the dynamical system formally obtained by letting the
sampling frequency 1/T of the PWM actuator grow to infinity, i.e.,

letting the duty cycle T — 0. We shall shall denote the state of the

averaged system by z(t) to differentiate it from the state vector x(t)-

of the discontinuously controlled system.

Propesition A.2 The average PWM model obtained by formally
imposing an infinitely large sampling frequency, 1/T, for the
controlled system (A.3),(A.4)is given by :

&= p X0+ (- WX @ = X0+ [x 0 - X0k s
= (D) +g@Dp a5
Proof (see [11]).

Remark The average PWM model (A.5) has a right hand side
which coincides with the Filippov average vector field (sec
Filippov [14] ) of X-(z) and X*(z) when an infinitely fast
switching strategy takes place around a discontinuity surface on
which the resulting controlled trajectory can be locally sustained.
The switching surface is then none other than an integral manifold
for the closed loop system (A.5) and the equivalent control that
induces the manifold invariance is just the duty ratio function p (sec
[11] for more details and connections with sliding regimes of
variable structure control). Notice, furthermore, that (A.5) is a
linear-in-the-control vector differential eguation formally obtained
from the original discontinuous model (A.3),(A.4) just by
replacing the binary control parameter u by the continuous
piece-wise smooth duty ratio function p .

The following result states that under identical initial
conditions, the controlled trajectories of the actual discontinuous
feedback controlled system (A.3),(A.4) continuously tend toward
the average PWM controlled trajectories generated by (A.5) as the
sampling frequencly associated to the PWM actuator (A.4) is
increased without limit. Hence, to arbitrarily closely retain the
gualiwlive and quantitative stability characteristics of the average

WM desi’gncd trajectories, a sufficiently high sampling frequency
is required for the PWM actuator of the actual discontinuously
controlled system. This is the key feature that allows an efficient

design scheme based on the continuous average PWM model.

.3 Let pu(t) be a given continuous piece-wise smooth
duty ratio function bounded by 0 « u(t) « 1. Under identical initial
conditions for the actual and average PWM controlled models , the
corresponding controlled state trajectories of the discontinuous
PWM system (A.3),(A.4) continuously and globally converge
toward those of the corresponding average P system (A.S) as
the sampling frequency 1/T grows without bound.

Proof (sec [8]).

The final step in completing a design procedure based on the
average PWM model consists in translating the average continuous
stabilizing feedback controller design into a suitable ON-OFF (i.e.,
discontinuous) feedback controller of PWM nature. Such ON-OFF
controller must retain the stabilizing features of the continuous
averafe designed controller and, at thc same time, it should yield
actual discontinuous responses that remain arbitrarily close to the’
smooth designed responses. This is primarily accomplished by
specifying a sufficiently high samp].ing frequency for the actual
PWM actuator and, secondly, by suitably smoothing of the state
variables before using them in the synthesis of the average
stabilizing designed controller. The smoothing action may
accoms)lished by introducing low pass filtering effects on the state
variables measurements. One then simply relies on the
high-frequency rejection characteristics of most sensing devices.

A.2. Generalities about ON-OFF-ON Pulse-Width- Modula-
tion Control of Nonlinear Systems

In a typical ON-OFF-ON PWM control strategy for the
control of the nonlinear system (A.1), the switching actions are
specified according to the sign of the duty ratio function as :

For pu[x(t)] > 0 :
»*(x) for ty <t S tg+ pu[x(4)]T
S s k=0,12,..(A6)
0 for tx + uIx(IT < t S 4+T

For u[x(ty)] < 0:

= (x) fortx <t Stp+|p[x)l | T
Nz ; k=0,1,2,... (A7)

0 forty + | u[x(A] | T « 1< t+T

where p(x(t)) is the duty ratio function constrained now within the
bounds -1 < pu(x{)) < 1.

Let fixot(x) = X*+(x), f(x"(x)) = X-(x) and f(x,0) =
X0(x) It is easily secn that the discontinuously controlled model
(A.1),(A.6),(A.7) is equivalent to the following switch controlled
models:

For p[x(ty)] > 0 :

9= u X+ (1-0) Xo(0) = XO(0) +[x*00 - X000 u
T (A8
=f(x)+g*(xu

with :
1 forty <t sy, )T
u= ok ik Blx(to)] y k=012,.. (A9)
0 for ty + u[X()IT « t S ye+T

For p[x(t)] <0 :

9X =y X+ (1- 1) XOx) = X0 X-(x)- XO0)] u

dt (A.10)

=f(x)+g (X

with :

‘ 1 forty <t Sty +|plx®]| T
u=

; k=0,1.2,.(A11)
l 0 forty +|pIxt)] | T « tS 44T
It is now easy to see that the results of the ON-OFF case
previously presented directly apply to the case of system (A.1) with
control of the form (A.6),(A.7). Using the same arguments as
before on each case, the infinite sampling frequency average model
is now constituted by two models, one valide‘}or W > 0 and the other
valid for p < 0. Such models are readily obtained as:
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Forufx(®)]>0:
K = X1 X0 = XX 00) - X00)
=0 (x) + g (x)p
For u[x(t)] <0:

(A12)

= WX+ aUDXW = Xw + re-xlpl
= 1) +g " (Iu| '

which can be synthesized in a single model, independently of the
sign of the duty ratio function p, as:

= G-luhw+Lulew-xwls lulxw s X))
=10+ 8e+0 - 5] + L igrco + o)

As corollaries to this result, if f(x,») is of the form f(x) + .

ag(x) and & takes values in the discrete set {-U,0,4+U}, the
average mode is simply given by dx/dt = f(x) + pUg(x), and finally
ifU hap}xns to be equal to 1, then the average model is simply:
dx/dt = f(x) + p g(x).

The preceding developments straightforwardly extend to the
case of multivariable nonlinear systems. The reader is referred to
Sira-Ramirez et al [16] for a concrete application and further details
about this important case. .
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Figure 1. Perturbed Dynamical Feedback Controlled Airplane
Tracking of Circular Path
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Figure 2. Tracking error of Dynamical Feedback Controlled
Airplane Following a Circular Path under Strong Wind
Perturbation

2243

0 (nt)
_ml//'//
] § 1 15 tine [sec) 20
“ x2 Int/sec]
of N ——
(] [] 19 15 time [se0] 20
14.0)
609
15 time [sec) 20

1 [ 10

Figure 3 . State Variable Responses of Dynamical Feedback
Controlled Soft Controlled Landigg Mz«meuver.y %
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Figure 4. State Response for Dynamical Feedback Controlled
Orbital Transfer.



