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Abstract The method of Extended Uneéﬁzéﬁon is proposed for the syswn-\aﬁé solution of sliding .
mode controlier design in nonlinear dynainical systems. The approach specifies discontinuous
feedback strategies leading to asympiotically stable Sliding Modes around desired constant

equilibrium points.
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1. INTRODUCTION

In this article, a new method is proposed for the synthesis of
stabilizing Sliding Modes (Utkin, 1973;’in nonlinear controlled

dynamical systems. The nonlinear sliding surface design method

is based, entirely, on the Extended Linearization approach for

nonlinear systems, developed by Rugh (1986,1987) and
Baumann and Rugh (1986). We propose to specify a nonlinear
sliding mode controller by first resorting to parametrized

linearization, about a general constant equilibrium point, of the
given nonlinear system. Using well known results (Utkin 1978,

Itkis , 1976, a standard stabilizing sliding hyperplane design is

then carried out on the basis of the parametrized family of linear
systems, possibly transformed to controllable canonical form.’
The ideal sliding dynamics, corresponding to the linear design,

is pur- posefully characterized by a set of stable eigenvalues

which are independent of the constant operating point. A:
suitable extension of the sliding hyperplane design yiclds a.
nonlinear switching manifold which is tangent to the prescribed.
hyperplane. The designed manifold contains the equilibrium
point and it is parametrizable in terms of the nominal operating

conditions. Moreover, the corresponding ideal sliding dynamics

can always be made locally linear (possibly, modulo a suitable

local diftyeomorphic state coordinate transformation derivable
from the linearized system). The nonlinear sliding manifold is
obtained, in a nonunique fashion, by direct integration of the

synthesized linear sliding hyperplanc. The nonlinear sliding

mode swirching logic is synthesized on the basis of the obtained

nonlinear sliding surface coordinate function and the corres-

ponding nonlinear equivalent control.

An important property of the proposed sliding mode
controller, aside from those already mentioned, lies in the fact
that if a sudden change of the nominal operating conditions takes
place, the control scheme exhibits self- i jes by
means of which a sliding regime is automatically formed which
stabilizes the system trajectories to the new equilibrium point.
This last property is clearly inherited from well known merits of
the extended linearization technique and it makes the
"scheduling” process of the sliding manifold and of the
switching "gains” totally unnecessary.

In this article only single input nonlinear systems are treated.
The multi-input case will be presented elsewhere.

Section 2 of this article presents a general procedure for
synthesizing stable nonlinear sliding manifolds for single-input
nonlinear systems via Extended Linearization. Section 3 presents
several illustrative examples -some of them of physical nature-
accompanied by simulation experiments. The conclusions and
suggestions for further research are collected in Section 4.

This research was supposted by the Consejo de Desarrollo
Cientffico, Humanfstico y Tecnol6gico of the Universidad de
Los Andes under Research Grant I-325-90.
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2. SLIDING MODE CONTROLLERS VIA

EXTENDED LINEARIZATION
2.1 Problem Formulation
Consider the n-dimensional nonlinear dynamical system:
&0 = txcv000) @1

where f(-,)) : RD xR ~—» RP is a continuously differentiable
function of its arguments. The controlled system (2.1) is
assumed to have a continuous family of constant state
equilibrium points, X(U), corresponding to nonzero constant
inputs, u = U. In other words : f(X(U),U) = 0 . The pair
[Pf/Ax(XU),U), 9fPu(X(U),U)] is assumed to be controllable.

It is desired to locally maintain, in a stable fashion, the
trajectories of the nonlinear system (2.1) at the constant nominal
equilibrium trajectory, X(U), by means of a sliding motion
suitably induced on a manifold S which contains such an
equilibrium point. In other words, it is required to synthesize 1)
a nonlinear sliding surface S, parametrized by the nominal
control input U, of the form:

S={xe RL, s(x,U)=0}

such that s(X(U),U) = 0, and 2) an associated variable
structure control law :

22)

_ ‘ u*(x,U) for s(x,U)»0

5 @.3)
lu=x,U) for stx, U) <0

u(x,U)

which automatically forces every small state deviation, from the
nominal operating conditions, to zero, via the local creation of a
stable sliding regime taking place on S and leading the state
trajectory to X(U).

In order to specify such a sliding manifold we propose to
resort to the method of Extended Linearization (Sec Rugh) as
indicated in the following paragraphs.

MMMMMMME o LA Sl

1) Linearize the dynamical system about each point in the
family of constant operating trajectories, (U, X(U)], obtaining
the following parametrized family of linear systems:

%= A(U)xg + b(U)ug 24)



where, for fixed U, the input and state permrbati.oh variables are

defined, respcctivcly.' as: ug = u(t U, xg(t) = x(t)}~x(U), while’

thcnxl_imam'x A(U) and the n-vector b(U) are defined as :
i bl 2 2 .
AQ):= 3; XW)U) ; bU): I WL, 2.5

Since the pair [A(U),b(U)] is assumed to be controliable, a
similarity transformation exists of the form:

zg = PU)xg=: [p1(U).p2(U).--- Pa(Ulxs  (2.6)

such that (2.4) may be represented as a controllable canonical

realization. The nonsingular matrix P(U) is obtained from the
well known expression :

o) o) - 1
ol) o) - 0
P -H(U) = [b(U), AUIV). -, AN UYbV)) S
0e-1(U) 1
1 0 0
Q@7

where:

detfA-AQU)] = AP + 0y 4 (U) A™Laa, 5(U) A2+ .. + 0g(U).
2) Obtain the transformed system in controllable canonical

Jormas:

215 = 225
225 = 233
g 2.8)
2(n-1)8 = Zgs
ins = ~0n.1(U)Zps~0n-2 (V)zga-1y8 =+ ~00(U)z15 + Up
3) Use as a sliding surface the linear manifold : .
I5=(zse RP:04(zp) = ), cizig =725 =0 ; ca=1}

i=1

2.9)

and choose the coefficients c;, independently of the operating -

. point [X(U),Ul, such that the roots of the characteristic
polynomial :

2“: i1 '

. A =0 (2.10)
. i=1. .

for the (reduced) linear ideal sliding dynamics are specified at -

-convenient locations in the open-left half of the complex plane. ;

i.e., so that the autonomous ideal sliding mode dynamical

system: ’

218 =225 .
b @.1n
Z(n-18 ® = Cn-1 Z(n.15 — Cn-2 z(n-_z)s‘— =€ 258

is asymptotically stable toward the-oiigin of transformed
coordinates.

4) Obtain, on the basis of the previously described dcsig'h
steps, the parametrized sliding hyperplane specification in terms .

of the original perturbed state coordinates xz, as follows:

Sg = { x5 € R":54(x5, U) :=05PWU)xp) = cTP(U)x5=0 }

2.12)
5) Obtain a nonlincar sliding manifold S such that its
corresponding linearization about the orerating point [X(L),U]),
yields back the sliding hyperplanc (2.12). In other words, find
8 nonlinear switching surface which is tangent to the sliding
hyperplane (2.12) at the equilibrium point.

i We must, thus, find a nonlinear

sa) Slidi
sliding surface coordinate function s(x,U), parametrized by the

5il

constant operating point U, such that the following rﬁlau'ons are
satisfied:

SO e =0 =T, T W), .- T V)
(2.13)

of, cComponentwise :
M =cTp: - = 2.14
M zexan cIpU) 5 i=12,.n (2.19)

with the additional (boundary) condition : s(X(U),U) = 0.

I
Remark In gencral, there are many trized sliding surface
coordinate functions, s(x,U), which satisfy relations (2.14) and
the boundary condition. Such a lack of uniqueness of solution
may not be totally inconvenient. However, the following direct
integration procedure, inspired by the results in Rugh (1986a),
allows one to obtain a nonlinear sliding manifold in a systematic
manner :

1) Assume, without loss of generality, that the first
component X, (U) of the vector X(U) is invertible, i.c., let there
exist & unique solution, X;~1(x;), for U in the equation x| =
Xy (U).

2) It can be verified, after partial differentiation with respect
to the components of the vector x and substitution of the
equilibrium point, that the following manifold is one possible
solution for the required parametrized nonlinear sliding
manifold:

X; 1) X6
S={ xeR: s(x,U)-L cTP(u)—léldo +

n

Y T - KiK' o) =0 )
i=2 ’

.15 @

Sb) i Once the nonlinear sliding surface

coordinate function s(x,U) is known, computation of the

equivalent control follows by imposing the well known (ideal)

invariance conditions, which make of the switching manifold a
local integral manifold of the smoothly controlled system:
sxUy=0 % s(x,U) =0 (2.16)
5¢) Sliding Mode Switching Logic A nonlinear sliding mode
switching strategy is usually synthesized such that the sliding
mode exnstcng:q‘cqnditions (Utkin,1978) are satisfied, at least,

in a local fashion. Such well known conditions are given by:

dS(;;U) <0 ; lm

s=0"

ds(x,U) R
~a 0 Q1M

s~>0*

It has been shown that, for nonlinear systems which arc
linear in the scalar control input, a necessary and sufficient
conditions for the local existence of a sliding mode is that the
equivalent control locally exhibits values which are intermediate
between the extreme values of feedback laws among which the
switching take place (i.c., u*(x,U) <uBQ(x,U) cu~ (x,U) ). The
region of existence of such a sliding regime coincides, precisely,

. with the region where such an intermediacy condition is satisfied

by the equivalent control. One may, therefore, synthesize the
nonlinear sliding mode switching logic, for such a large class of
nonlinear sislems, from knowledge of the equivalent control
function, uEQ(x,U), and of the sliding manifold coordinate
function, s(x,U), (See Sira- Ramirez, 1988) as follows :

u(x,U) = - kpEQux,UY sgnsxU) ; k> 1 (2.18)

In more general cases, where there is no special input
structure to the system, the above switching logic, or any onc
satisfying the equivalent control intermediacy condition, may
still locatly create a sliding regime provided the system exhibits a



control foliation property (See Sira-Ramirez, 1989a,1989b).
For the class of application examples we will be presenting in
th\;f next section, a switching control law of the form (2.18)
suffices.

3. SOME APPLICATION EXAMPLES

In this section we present some illustrative examples of
sliding mode control synthesis, for nonlincar plants, using the
method of Extended Lincarization. We begin by a somewhat
general second order example in which the synthesized sliding
surface is seen to entirely coincide with the intuitive solution that
one would propose, in general, for achieving a linear ideal
sliding dynamics. The proposed sliding mode design process,
thus, appears as a natural synthesis procedure. The rest of the
examples in this section represent simple applications of
physical nature.

3.1 A General Sccond Order Examplc

Consider the nonlinear controlled system, defined in R2,
expressed in regular canonical form ( See Luk'yanov and
Utkin, 1981 ):

x1 = @{xq, X3)

X2 = ¥(x), X9) + g(x}, Xpu

We assume the existence of a continuum of constant
equilibrium points, parametrized by the corresponding constant
value U of the control input u (parametrization with respect to
equilibrium values of the state variables is also possible in cases
where U =0, Scc Rugh (1986a) and Example 3.2 below ):

u=U; x; ) =X)(U) ; x; W) =X,(U)

3.1)

3.2)

such that : d¢/0x(X1(U).Xo(U)) # 0, and g(X1(U).X2(U)= 0. -
i ilizing Switchi in il
Lincarized 5
Linearization of system (3.1) about an equilibrium point of

the form (3.2) yields:

116 = gi(X1(U) X2W)xy5 + (X1 (U) Xo(U)xzs

125 = (1 (X (V). X)) + gi(X1(U). XAUDU] 315+ (33)

[R(X1(U).XAU)) + g2(X1(U). X2AUDU]x 25+ g(X1(U).X2U))ug

where @, :=dQ/ox; ; ¥ = 0Yox;; gi=dghx; ; i=12.
We briefly express such a lincarized system by :

%15 = Q1X15 + 92X25 G4
%25 =[11 + 81U] x15 +[12 + g2U] x25 + 85
As it can be easily seen, the linearized system (3.4) may be

placed in controllable canonical form by means of the following
similarity ransformation, parametrized by the equilibrium point :

o (3.5)
£ = X184+
2% m[m 15+ P2 %28

The previous assumption about the nonvanishing of g and

@, at the equilibrium point X1(U),X3(U)), locally guarantees
the nonsingularity of such a linear coordinate transformation.

Evidently, a sliding line rendering an asymptotically stal?lc ideal
sliding dynamics, for the transformed system, is given by
o5zg) =c1z15+ 228 = [y NTzg= ¢T zg. Using (3.5), the

sliding line equation in original coordinates is obtained, after
multiplication by the nonzero factor gp,, as :

Ss= (x5 € R2: sgxs,U) = (@1 +cp) x5+ @2x25=0 ¢ ¢p> 0}
3.6

Indeed, if the system is ideally maintained on such a sliding
line, the resulting dynamics (known as the ideal sliding
dynamics) is simply governed, according to (3.4), by :

X5=-c1x15

c; >0 37

which is asymptotically stable to zero, and independent of the

operating point.

The equivalent control, usEQ (xg) exists and it is uniquely
obiained from the ideal sliding mode conditions :

sg(xs.U) =0 (3.8)
g— sp(xgU) =0 (3.9)
as:
15x5U) = -é[ 191} + D22 i-g201) U-cmrarterreal)  xis
(3.10)
hesis of lidin ller in
System :

In general, the key idea behind the method of Extended

Linearization for obtaining a nonlinear controller design, once a
linear feedback stabilizing controller has been properly
synthesized for any member of the parametrized family of linear
systems, consists in finding a i such that
when linearized about the nominal operating trajectory yields
back the designed linear regulator specified for the family of
linearized systems.

In nonlinear sliding mode design, the method of Extended
Linearization consists in specifying a (nonlinear) sliding
manifold, and its associated eqll_lgralem control, on the basis of
the lincarized surface design. This manifold must be such that
when linearized about the constant equilibrium point yields back

" the designed stabilizing sliding hyperplane corresponding to the

linearized system. The lincarization of the corresponding
nonlinear equivalent control, about the operating point, yields
the linear equivalent control previously obtained.

Expressions (2.14) yield, in this case, the following

_conditions :

as(x,U)
ax,

9s(x,U)
oxy

x =Xy Q) = €1+ 91X (U)X2(U)
x2 =X2(U)

x =X = 92(X1(U).X2(U))

x2 =X5(U)

Let x stand for (x;,x3), it is easy to verify, from the

definition of @, and @,, that the following nonlincar sliding

manifold S is such that its surface coordinate function s(x,U)
satisfies the above conditions,

(3.11)

S= {x € R2: s(x, U)y=@(x) +cy(x; - XiU) =0 : ¢;> 0}

(3.12)
It is immediate to verify that s(X(U),U) = 0, as required,
ie., S contains the equilibrium point.

The ideal sliding dynamics corresponding to the manifold
(3.12), according to the first equation in (3.1), is clearly given
by the linear system:

il = - C](Xl -X](U)) H
which represents an asymptotically stable linear dynamics whose

>0 (3.13)

solution converges toward the first component of the equilibrium .
point. Since @, is nonzero at the equilibrium point, the implicit

 function theorem guarantees that the local isolated solution for x;

of s(X;(U),x3.U) = ¢(X{(U),x2,U) = 0 exists and it is unique.
Thus, the solution for x; coincides, precisely, with Xa(U).
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. The idcal sliding conditions: s =0, ds/dt = 0, yield, by
“virtue of (3.1), (3.12) and (3.13), the following equation for the
equivalent control on s = 0 ( where x stands for (xpx)T):

§ = - c1 [@100) + cf] (x)=X1(U)) + 200(70) + g(x)uEQ] = 0
ie. 614
uEQ(x,U) = - ‘é&;“ ellxi=X1W) (o1 +c1) + o2
(3.15)

mark It is easy to verify, after some tedious but
sumg_lltfqmud algebraic manipulations involving (3.12),(3.13),
(3.1) and (3.4) that linearization of (3.15) about the equilibrium
point [X;(U).X2(U)] yiclds, precisely, equation (3.10) defining
the linear equivalent control. However, it is not immediately
obvious, in general, how to obtain (3.15) by direct integration
of (3.10). [ ]

The switching strategy for the control function u that
accomplishes sliding mode existence for the discontinuously

controlled system, provided go, is positive, is given by:

u=-khEQxUlsgns(x) ; k»>1  (3.16)

Remark The switching law (3.16) is valid whenever the factor
£9,, used in defining (3.6), is positive. Otherwise, the minus
sign must be changed in (3.16). (See also example 3.2 below).

. -Schedul idin ntroll ntati

Consider the kinematic and dynamic mode! of a single-axis
externally controlled spacecraft whose orientation is given in
terms of the Cayley-Rodrigues represefitation of the attitude
parameter, denoted by x; ( See Dwyer and Sira-Ramfrez ,1987).
The angular velocity is represented by x; while J stands for the

moment of inertia and u is the applied extemnal torque.

Lo R
dt J
Given arbitrary initial conditions, a slewing maneuver is

required which brings the attitude parameter to a final desired
value X and the angular velocity to a rest equilibrium. We
summarize below the design steps leading to a nonlinear sliding
surface where the ideal sliding dynamics is linear and.
asympiotically stable toward the desired equilibrium point: xy=.
X1, xp=0,u=0. )

L~ osadig @.17)

mily of Lincarization nstant Equilibri
&
s 0 050+xd [ ]+ O lus 318)
dugp 0 o [l 1%
2 ]

with : X 5=%) = X} , X5 =%X2-0,us=u-0.

2 ¢
(] m] e
dz
& eam) el om
dt

s13

Linear Sliding Surface and Ideal Sliding Dynamics in
g n

Imm_nﬂmd_mLﬁgﬁnLam
In transformed coordinates:
oszg =z +erzis =0i >0 (329
Tip=-czp (3.22)
ugq(zﬁ) = c%zlﬁ (3.23)
In original coordinates:
s5(xg) = € X35+ 0.5 (14X Dxp5 =0 (3.24)
X1 == C1X13 (329
2J¢?
(x5 X)) = ——L—xy5 (3.26)
a+x})

linear Slidi rf 1 Sliding Dypamics and
. in 5

- Nonlinear Sliding Mode Controller

The nonlinear sliding surface coordinate function s(x.X)
must satisfy the following relations:

9s(x,X1)
Bx,

(BEX0E asaexty oo
m x=X
x2-0

X le
leo

with the condition: s( [X;,01T,X;)=0.
After substitution of Xy by x; in (3.27), and by direct

 integration one obtains:

s(x.X1) = cy(x;=X) + 0.5 (1+ xD)xp (3.28)
From (3.17) one obtains, on s(x,X;) = 0, the ideal sliding
dynamics as:
’ X1 == c)(xp - X1) (3.29)
The equivalent control uEQ(x X,) , associated to (3.28) , is °
seen to be given by :

2
uEQ(xl, Xp= M (-
a +x})

It can be easily verified that linearization of (3.30) about the *
equilibrium point [X;,0] yields back the linear equivalent control
(3.26). However, one does not naturally obtain (3.30) by
integration of (3.26), after substitution of X by x;. Indeed,
direct integration of (3.26) leads to uBQ(x,U) = 2 J¢,2[ tan~(x))
- tan—1(X)), but this controller does not leave the nonlinear
sliding surface invariant as it may be easily verified. Due to the
lack of uniqueness of solutions of the "unlincarization®
procedure, only feedback equivalent control laws computed on
the basis of the obtained nonlinear sliding surface are actually
valid. (See also the remark below).

Finally, according to (2.18), the switching logic is given by:

B+:X)  (330)

"xci) I(xl- X (1= x}+ 2x|X1)|sgn s(xXp) ;s k1

+1
(3.31)
Remark Notice that from (3.21) one could have also obtained,
instead of (3.24), the following linear sliding manifold:

wx, Xp) = -k -2
[t

2¢
(1+x}

The ideal sliding dynamics, and the equivalent control,
corresponding to this manifold are, respectively, still the same as
in (3.25),(3.26). However, the nonlinear sliding surface
coordinate function s(x,X;) must now satisfy the following

sg(xg X1) = X15+X5=0 (3.32)



B(x,X1) g 2¢ BEX)

B lgsx exh T [xex
x=0 x=20

=1(3.33)

with the condition: §({X;.01T,X;)=0.

After substitution of Xj by x; in (3.33), and by direct
integration one obtains:

sX1) = 2¢pftan~! (x;) - tan~! (X1)] + %2 =0 (3.34)

The nonlinear equivalent control, associated to (3.34), is
given by:

2 (x1-
vEQ(x,X1) =M (3.35)
1+ Xf

Once again, linearization of (3.35) about the equilibrium
. point yields back (3.26), but the equivalent control obtained by
use of the integration formula is, as it was seen before,
uEQ(x,U) = 2J¢;2 [tan—1(x ) — tan=1(X})] , which does not
produce invariance of (3.34) as it can be easily verified. Hence,
only (3.35) is a valid equivalent controller. The comesponding
ideal sliding dynamics taking place on the sliding surface (3.34)
is no longer a linear system, in the original coordinates.
However, & suitable nonlinear state coordinate transformation
reveals the underlying lincar nature of such an ideal sliding
:!hynamics. Indeed, one obtains by virtue of (3.34) and (3.17)

at:

f1m=c; (1 +x)[anYxp) - anXy)  (3.36)

Letting & = tan—1(x,), and denoting the constant equilibrium

point by : £ = tan~1(X), one readily obtains:

d -
—d—g-s-c,(i-:.) 3.37)

' n
Simalations Computer simulations were carried out for the
synthesized sliding mode controller (3.28),(3.31) on a
spacecraft with moment of inertia : J = 90 N-mt-sec?, with ¢,
chosen as 0.11 sec~!, and k = 1.2 . Figure 1 shows the state
trajectorics of the sliding mode controlled system when the
reference operating point, for the Cayley-Rodrigues attitude
orientation parameter X, abruptly changes from X = -0.4 rad to
Xy = 0.6 rad at t = 60 sec. The parametrized sliding surfaces,
corresponding to both operating points, are also depicted in this
figure and labeled as Sy, S, Figure 2 shows the corresponding
time responses of the state variables x| and x under such a large
change in the operating equilibrium point.

Remark In the previous second order example, the nonlinear
system was already in regular canonical form . Hence, in
accordance with the results of Example 3.1, the linearizing
sliding manifold could have been obtained directly from the
systems equations. However, it should be remarked that this is
not the case for (single input) higher order systems, nor for
systems which are not in regular canonical form (even if they are
affine in the control). For the last class of systems, obtaining a
linearizing sliding manifold is by no means a trivial task.
Moreover, transformation to regular canonical form, of a
nonlinear system, involves a quite complicated procedure
dealing with the solution of certain associated Pfaffian systems
(See Luk'yanov and Utkin, 1981). The method of extcnded
linearization, thus, provides with an alternative synthesis
approach for such particular cases and, more importantly, for the
general case represented by systems of the form (2.1). The next
example below deals with a second order control-affine
. (bilinear) system which is not in regular canonical form. [ ]

g ding- 1
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Consider a DC, field-controlled, motor provided with
scparate excitation. Let V, be the constant armature voltage and
let u be the ficld current, acting as a control parameter. The set of
bi-linear differential equations describing the dynamics of such a

controlled system, acting on a load which exhibits non
negligible damping reaction, is given by (Se¢ Rugh, 1981, pp.
98-99)) :
X’] =-&Xl ‘K-qu +!ﬂ
L™ L™ L (3.38)
X2 =—?—x2+ Ijg-xlu

where x; is the armature current, X; is the motor shaft angular
velocity, L, and R, are, respectively, the inductance and the
resistance in the armature circuit, K is the torque constant, while
Jand B are, respectively, the load's moment of inertia and the
associated viscous damping cocefficient.

1t is required to maintain a fixed nominal angular velocity W
by suitable discontinuous control actions generated by the ficld
circuit input current u. We summarize next the nonlinear sliding
mode controller synthesis.

il nstan itibrium Poin|
v=U, x=XiU) = — B 5= Xo(U) = WU = — KU
RaB + K22 RB+KU?
(3.39)

E -l El- . .- E . ll C E -]-l 0

- KNU

_Ra _KU 252
[{ua], Lo Tha[ms LA
X2 K}L _l}_ 25 KBV,
JRyB+K2U?)
(3.40)
fi n I i
_B _ KU _
u]| TNO LG [;;2]0-41)
| KU2-BRy _ 2BKU
. Lin®  LInw
Wi
nU) = K2V, U[-2B2L, + RyJB - K2l£!l (3.42) .
1234RqB + K202
""' l !Q.lc :‘:
In transformed coordinates:

0 (3.43)

os(zp =25+ ciziy =0:
215 == 1215 T (344

2152
ugo(zw,U)- [&____B:; U -cl(&——l“l_j; -c,)]z18(3.45)

- In original coordinates:

s U) = HcBLa—RyB + K2UD x5+ (BB-Jo)KU 13520 (3.46)

X15=-C1X1§ + X25=—C1X25 (3.47)

2K2U2BL + RB - Ko ) - ~RB+K?
uaw(xls)sﬁ[ B, 4] .sz Jleng-n] BBl Lj+ )
(348)

_{c,nh-kmmf]m
LiB-ky)

Mﬂmmmmmmﬂwmm“ insar Siiding Sucf

2ui
s(x.U) = - (¢;BLy - 2R B - —B¥2 | - BV,in Mx,l
{ RB+ KQuZ ] BV, v (3.4 )

Sy



+kzg-1c,)n[ 2_|_ViKU 2] co
2 b ‘v,a+ K202)

iz--cllxz— —Yﬂ&u———]

RB + K2U2 @50

ey Lle PRV b3S 0] R+ ) 28148 o

1 hyLeRy b8 i) kG0 o 1B 3 sy
(3.51)

u(x,U) = - k| uEQ(x,U) sgn s(x.u) (3.52)
Simulations Computer simulations were carried out for the
synthesized sliding mode controller (3.49),(3.52) on a loaded

DC-motor with moment of inertia: J = 1.06 x10-6 N-m-sec/rad,
B=6.04 x 10- SN-m-s/rad and L =120 mH, K=1.41x

10-2N-m/A, R, =7Q, V, = 5 Volts. ¢| was chosen as 5.0
sec™], and k = 1.5. Figure 3 shows the time responses of the
state variables x; and x5, of the sliding mode controlled system,
when the reference operating point for the motor shaft angular

velocity abruptly changes from Wy = 159.25 rad/sec to Wé =
280.69 rad/sec at t = 1.0 sec. The corresponding change in the
input current nominal value is from U=0.1 Ampto U =02
amp.

4. CONCLUSIONS

A general systematic approach has been proposcd for the
synthesis of sliding mode control regulators for a rather wide
class of nonlinear systems, possessing no Panicular control
input structure and exhibiting a continuous family of constant
operating points. The method entitles use of the extended
linearization technique for the specification of the nonlinear
switching manifold, the associated equivalent control and the

. required switching strategy. As demonstrated by a general
second order example, in which the required lincarizing sliding

_surface is readily apparent, the method appears to be a natural
one, as it yields the intuitively obvious solution. The
self-scheduling properties of the proposed controller were
demonstrated in two physically motivated simulation examples.

The fundamental advantages of the proposed design scheme
lic in the facts that 1) The aglproach benefits from an extensive
list of well known theoretical contributions for design of linear
sliding modes, including efficient computer packages already

" develo for such design tasks. 2) The possibilities of
nontrivial applications can be tly enhanced, and carried out,
by means of existing algebraic manipulation systems. 3) The
method naturally enjoys rather useful self-scheduling properties
when nominal operating conditions are abrupily changed. This is
particularly important in the field of control of mechanical
manipulators, acrospace systems and other practical nonlinear
control application areas. 4) The method developed in this article
also constitutes an alternative approach, for approximate
linearization of nonlinear systems, to the method developed by
Bartolini and Zolezzi (1988).

5. REFERENCES

Bartolini, G. and Zolezzi, T. ( 1988). Asymptotic Lincarization of Uncertain
Systems by Variable Structure Control, Systems and Control Letters. 10,
111-117.

Baumann, W.T. and Rugh, W.J. (1986). Feedback Control of Nonli
Systems by Extended Linearization. JEEE Transactions on Automatic

Dwyer, T.A.W. and Sira-Ramirez, H. (1987). Variable Structure Control of
Spacecraft Attitude Maneuvers Joumal of Guidance, Dynamics and Control,
11 262-270.

Itkis, U. (1976). Control Sysiems of Variable Structure, Kater Publishing
House: Jerusalem.

- Luk'yanov, A.G. and Utkin, V.1 (1981). Ways of Reducing Equations of
A ika i Telemekhanika. 42

Dynamical Systems to a8 Regular Form,”
513,

Rugh,W.J. (1981). i -
Approach, The Johns Hopkins University Press: Baltimore.

Rugh, W.J. (1986). The Extended Linearization Approach for Nonlinear
*Systems Problems, in Algebiai ic. i i
[ . pp- 285-309. M. Fliess and M. Hazewinkel (Eds.) D. Reidet
Pn!)li.;_hmg Company: Dordrecht.
Rugh, W.J. (1987). Design of Nonlinear PID Controtlers,” AIChE Journal,
33,1738-1742,

Sira-Ramirez, H. (1988). Differential Geometric Methods in Variable
Structure Control, Intemational Journa! of Control, 48, 1359-1390.

' Sira-Ramirez, H. (1989a). Sliding Regimes in General Nonli
A Relative Degree Approach, i
1487-1506.

Systems :

Sira-Ramirez, H. (1989b). Nonlinear Variable Structure Systems in Sliding
Mode : The General Case, i i -3,
1186-1188.

Utkin, V.. (1978). Slidi in Variable'
Structure Systems, Mir Publishers: Moscow.

) 'FIGURES

initial eperating point [-8.4, 0)
final eperating point (0.6, 0}

2 lrad/sec)

u [rad}

-1 0 1
Figwre 1. State Trajectories of Sliding Mode Controlled Spacecraft under a
Sudden Change of the Orientation Parameter Operating Point.
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Figure 2. Typical State Responses of Sliding Mode Controlled Spacecraft
under a Sudden (shange of the Orientation Parameter Operating Point.
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Figure 3. Typical State Responses of Skding Mode Controlled DC-Motor
under a Sudden Change of the Shaft's Angular Velocisy Operating Point
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