WA2 12:15

An Extended Linearization Approach to Sliding Mode
Control of Nonlinear Systems

Hebertt J. Sira-Ramirez

Departamento Sistemas de Control
Universidad de Los Andes, Mérida 5101 -Venezuela.

Abstract

A new approach, based on the method of Extended Linearization is
proposed for the synthesis of Variable Structure feedback control
strategies leading to stable linearizing Sliding Regimes for nonlinear
dynamical controlled systems. The class of systems, to which this
technique is applicable, is assumed to posses a continuum of constant
equilibrium points in the input-output space. The approach is
illustrated and evaluated by means of a design example.
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1. Introduction

In this article we illustrate by means of a physically meaningful
example the use of the Extended Linearization technique, developed
by Rugh and his coworkers [1]-[2], in the specification of nonlinear
sliding manifolds for nonlinear variable structure systems. The
obtained sliding manifold is such that the ideal sliding dynamics (see
Utkin [3] ) results in a linear asymptotically stable motion toward
preselected constant equilibrium points. The method also exhibits
certain degree of self scheduling properties inherited from well known
merits of parametrized controllers based on the extended linearization
approach. In [4], the same approach was used for designing nonlinear
sliding manifolds for nonlinear systems in which no restrictions in the
availability of feedback control laws was assumed. In this article we
extend, only by means of an example, the results in [4] to the case of
proper variable structure systems regulated by switched control
actions between two available, fixed, feedback strategies, or
"structures”. To this class of systems belong : switchmode dc-to-dc
power supplies, on-off jet-controlled satellites and, in some instances,
certain valve controlled fluidic systems and robotic manipulators.

The proposed approach constitutes an attempt to have a systematic
means of sliding mode control design for nonlinear systems and is
based on designing a family of parametrized linear sliding surfaces for
the linearization, around a generic constant equilibrium point, of the
ideal sliding system dynamics. On the proposed linear switching
surfaces, the tangent system - appropriately placed in controller
canonical form - is forced to adopt an asymptotically stable behavior
characterized by imposed eigenvalues which are independent of the
operating point. The obtained family of switching manifolds may be
regarded as an integrable distribution which is tangent to a certain
nonlinear sliding manifold. The standard extended linearization
process indicates that one should find a solution manifold by means of
direct integration. Assessment of the existence of a sliding regime by
means of switching among the given constraining feedback structures
is easily accomplished by evaluation of the equivalent control and its
well known intermediacy condition with respect to the given feedback
laws ( which can always be reduced to take numerical values in the
discrete set {0,1}).

In section 2 we present a simple but illustrative sliding mode
controller design example, of the on-off type, for a nonlinear system.
We evaluate, by means of computer simulations, the performance of
the proposed discontinuous controller. The parametrized stiding mode
controller is shown to be particularly well suited to handle abrupt
changes in the desired equilibrium point without "rescheduling” of the
controller. Section 3 contains the conclusions of the article.

2. A Design Example

Consider a system consisting of two identical tanks containing a fluid
which escapes from the first tank into the second through an orifice.
The second tank also empties to the environment through an identical
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orifice. The first tank receives fluid controlled by an on-off valve. A
nonlinear dynamical model for this system is represented by (see
Rugh [2]):
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where x) and x; represent the height of the liquid on each tank and u
is the feed rate, taking values in the set {0,Uyax }. The constants ¢
and A are assumed to be known. If a sliding regime exists for system
(2.1) on certain smooth sliding manifold s(x) = 0, thanks to the use of
the available control set {0,Uy,, ), the ideal sliding dynamics is
simply obtained by formally replacing in (2.1) the equivalent control ,
denoted by p(x) on (2.1). The equivalent control is obtained from the
invariance condition ds(x)/dt = 0. The obtained autonomous dynamics
represents a description of the average behavior taking place on a
generic representative of the family of switching surfaces s(x) =
constant and. If we denote by z, and z, the states corresponding to
such an average behavior, the model (2.1) can be formally replaced by
the piecewise continuous model (0 < L < Upax):
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On such an average system a linearization procedure around a given
average equilibrium point indeed makes sense. This is in clear
contradistinction to the case of system (2.1), which is discontinuous
and, hence, non-linearizable! The average equilibrium state of (2.2),
associated to a constant average input u = U, is represented by: z )
=zy(U) = U2/c2, Linearization about this generic equilibrium point
yields:
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where zjg = z;- Zi(U) ; i=1,2, pg=p -U. The sliding surface
design for the tangent model (2.3) is greatly facilitated if the linearized
system (2.3) is transformed to controller canonical form by means of
the following linear incremental state coordinate transformation:
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One then obtains:
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In the new coordinates, the proposed stabilizing sliding surface
for the tangent model is simply taken as:

o5(&s) = E25 +c1&15 5 ¢ >0 (2.6)
Notice that a sliding motion on such a sliding surface yields an
incremental state trajectory which asymptotically converges to the
origin of coordinates (i.¢., to the operating point ) in a manner which
is only dependent upon the design constant c,. In original average
coordinates the sliding surface (2.6) results in a parametrized
switching manifold of the form:
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The extended linearization approach suggests now to find a
nonlinear smooth switching manifold, s(z,U) = 0, parametrized by



U, such that: I} the linearization of the surface around the equilibrium
point z;(U), zp(U) yields back (2.7) and 2) the obtained sliding
surface contains z;(U), 25(U). In other words the following relations
must hold true:
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with the "boundary” condition : s(z;(U),z5(U),U) = 0. Integration of
(2.8) is straightforward upon replacing U by c*/zl in the first relation
and by c‘/zz in the second relation in (2.8). The following nonlinear

sliding manifold yields the solution to the (distribution) integration
problem:

s@U) = £vz7 —SAerz+cl[zz—1c123] = 2.9)

It should be remarked that the solution to the integration problem
represented by (2.8) is by no means unique. The proposed solution
(2.9), however, has the enormous advantage of yielding a linear ideal
sliding dynamics. Indeed, it is easy to see that if a sliding regime
exists on (2.9), the algebraic relation satisfied by the state variables
implies & constrained motion which satisfies the following reduced
order asymptotically stable linear dynamics :
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As it can be easily checked, after some tedious but
straightforward algebraic manipulations, a different solution for the
required sliding manifold is represented by :
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This sliding surface results in a nonlinear ideal sliding regime
which could be linearized by a nontrivial diffeomorphic state
coordinate transformation.

The equivalent control associated to (2.9) is given by:
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A sliding regime exists on the region of the sliding surface
limited where the following two relations are valid :
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Itis easy to see that the switching strategy which accomplishes
such a local sliding regime on the original system is given by u =
Unax fors <0and u=0 fors > 0.

Simylations Simulations were performed usihg the nonlinear facilities
of the MATLAB package for the two tank system controlled by the
above switching strategy and the sliding surface (2.9). The chosen
parameteis were ¢ = 1, A = 0.5, Upax = 7. A family of sliding mode
controlled state trajectories, stabilized to the equilibrium point z;(3) =
25(3) = 9, are shown in figure 1. A sudden change from the
equilibrium point z;(3) =z3(3) = 9 to the equilibrium pint z5(4) =
2)(4) = 16 is also shown in figure 1, with the corresponding sliding
surfaces §; and S . The time history of a typical trajectory
undergoing such an abrupt change in the operating conditions is
shown in figure 2.
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3 Conclusions

In this article we have shown, through a simple example, that, for the
class of systems possessing constant equilibrium points, the extended
linearization method constitutes a most convenient, and rather general,
design technique for specifying a parametrized family of nonlinear
sliding manifolds with linearizing properties. Although the treated
example corresponds to one easily transformed to regular canonical
form (see Utkin and Luk'yanov [5) the approach is applicable to
systems with no particular control input structure. The multivariable
version of the approach seems an interesting topic to be pursued in the
future.
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Figure 1. Family of sliding mode controlled state trajectories
undergoing a sudden change in the operating conditions.
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Figure 2. Time response of typical sliding mode controlled trajectory
undergoing a sudden change in the operating condition.



