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Abstract

In this article a method is proposed for the design of Pulse-Width-
Modulation (PWM) feedback controllers regulating linear dynamical
plants. The design is carried out on the basis of an infinite frequency
average model of the actual closed loop controller system which retains ail
the essential qualitative features of the discontinuous controlled system.
The average closed loop system results in the same original plant
controlled by a memoryless nonlinearity. ‘This fact allows the use of
classical control time domain design techniques in the specification of the
PWM controller parameters. An alternative frequency domain approached
is proposed for the study of the stability of PWM feedback controllers.
Several illustrative examples are presented.

I. Introduction

Pulse-Width-Modulation (PWM) controlled systems constitute a class of
discontinuously controlled systems on which the control actions are
determined on the basis of periodical error signal sampling. At each
sampling instant, the control signal is enabled during a fraction of the
sampling period which is proportional to the error magnitude. This
practical control technique has been profusely used by control enginecrs at
least for the last 30 years, or so, for the design of practical control
systems.

In spite of its practical importance, and the enormous number of
application articles appearing in various joumals, theoretical developments
of PWM controlled systems have remained relatively little explored in the
last 18 years. Early contributions are those of Nelson [1], Kadota and
Boume (2], Jury and Nashimura [3] and Tsypkin [4). Further
developments, relating the design of PWM controllers to the input-output
functional design techniques, were contributed by Skoog [5] and Skoog
and Blankenship [6). Other works dealing with PWM control are those of
Fricdland [7], Min et al {8], and more recently that of LaCava et al [9].

The underlying feature in all of the above contributions is the discrete-time
considerations (sec also Czaki [10, pp. 591]) associated to the analysis and
design issues of such controlled systems. Due to the sam; ling process
associated with the modulator operation, discretization techniques have
been traditionally seen as natural in the analysis of PWM controlled
systems. However, discretization also leads to quite complex calculations
that, at some point, necessarily resort to some kind of not easily justifiable
approximation scheme. Moreover, the obtained controller design is
usually unnecessarily complex and, generally, places an extra on-line
computational burden which makes its realization difficult or somewhat
. expensive.

In recent works [11] (12], a new technique has been proposed to ease the
PWM controller design task of nonlinear PWM controlled systems without
resorting to discrete-time considerations. This approach is based in
considering a smooth, infinite frequency, average model of the PWM
controlled system and carrying out the fecdback design on the smoothed
version of the controlled system actually retains all the basic qualitative
features (i.e., stability) of the discontinuous closed loop controlled plant.
As a matter of fact, a sliding regime was shown to exist around the average
stale trajectories or, more precisely, about integral manifolds of the average
dynamical system model. The sliding mode trajectorics actually converge
to the average trajeciories as the sampling frequency increases to infinity.

Generally speaking, PWM controlled systems are classed in two types :
ON-OFF and ON-OFF-ON modulators. The first type cotresponds to
systems in which the discontinuous control action’ takes values on a
discrete set, consisting of two elements, with numerical values, say, 0 or
1. Typically, systems controllers by a two-position switch are of this type
(DC to DC power converters, local quantizers of the type used in Delta
Modulation Circuits for analog signal encoding, switch-capacitor circuits,
etc.). The second class of systems typically correspond to control actions
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that can be made to take values on the discrete set {-1,0.1}. To this type
correspond, for instance, symmetric gas reaction control jets regulating
reorientation maneuvers in artificial satellites, torque actuators used for the
control of joint positions in robotic manipulators, input-relief arrangements
of control valves in fluid processes, etc.

In this article we extend the results of [12], restricted to the class of ON-
OFF PWM systems, to the case of ON-OFF-ON PWM controllers
prescribed for linear time invariant single-input single-output plants. It is
shown that a number of classical design techniques such as the circle
criterion, the Popov line criterion, the Describing Function Method, and
many others, become immediately available for the PWM controller design
task. Besides the possibilities of an exact analysis, all the technical
difficulties associated to the unbounded character of the PWM operator [6]
block are circumvented. The requirement for low pass cascade multipliers
[6] is hence dropped from the analysis or design scenario.

This article is organized as follows : Section 2 contains the general
theoretical considerations that validate the time domain design approach
based on the average model. Section 3 is devoted to the derivation of a
frequency domain stability criterion, Section 4 contains several design
examples including simulations. Section 5 is devoted to conclusions and
some suggestions for further work.
II. Background Results
Consider the linear time-invariant single-input single-output controlled
system described by (sce figure 1) :

¥(s) = G(s) u(s)
e=yq-y
u=MPWMe(ty)

2.1

where the PWM operator is characterized by a periodic sampling, with
period T, of the error signal e(t), at discrete instants t Gi.e., kel =
tkx + T). M will be a constant control amplitude gain but it could also be,
say, a dynamic shaping filter or compensator network (see example 1).
Following [6], the control signal u(t) produced by the modulator is
characterized by :

= {sign [e(tp)] for ty <t <ty +7 e(ty)IT
PWM(e) = {o otherwise o 2.2)
with
) for le(tp)l> 1B
pleto) = {IBe((K)I for  leag)< 1P @.3)

T8 is known as the duty ratio and P will be addressed as the PWM gain.
e sampling frequency is simply F = 1/T. G(s) is a strictly proper causal
rational transfer function, '

Proposition 1

As the sampling frequency tends to infinity, the closed loop PWM
controlled system (2.1) represented in figure 2 is described by :

¥(s) = G(s) v(s)
e=y4-y

(2.4)
u=M satge

where



signe for lel> 1/

= A Q.5
Pe for lel<1/PB

System (2.4)-(2.5) will be addressed as the m (sec

figure 2). System (2.1)-(2.3) will be referred to as the
gontrolled system.

Proof: Let 3(A,B,C) be any state space realization of G(s) with state
vector represented by x(1) at time t, i.e., G(s) = C(sI-A)'llB.

Attime ty41 =ty + T the system state may be expressed as :

+T e+t

Kt 1) = X + jk Ax(tddt+ f BM sign e(tdt

f iy
hence :
H 0,y - tX(tem) - XQOUT = ddt = Ax(t) + BMrple(0)] sign ()
= Ax()+BM saget)

. = Ax(®)+Bv()
1Le.

¥(s) = C(sI - AY'1 Bv(s) = G(s) v(s)
with

v(t) = M saig e(t)

The proposition implies that for infinite sampling frequency, the actual
closed loop PWM controlled system is equivalent to a system in which the
PWM operator is replaced by a saturation block.

In onder to use this results as a basis for the PWM controller design (i.e.,
for the specification of b and, possibly, the sampling frequency F), we
must show that the qualitative features of the actual PWM controlled
system (2.1)-(2.3) are retained by the average model (2.4)-(2.5). Asa
matter of fact, we shall prove that, starting both systems from close
enough initial conditions, the responses of the actual and the average PWM
controlled system remain arbitrarily close to each other for all finite time.
This is the topic of the next theorem.

Theorem 1

Let x(t) and 2(t) denote, respectively, the states of the actual and the
average PWM controlled systems and denote by e*(t) = x(t) - z(t), the
vecior discrepancy among such stated at time t. Then, given an arbitrarily
small positive quantity €, there exists a sampling frequency Fg and a small
positive quantity &) such that for any initial states discrepancy satisfying
lle*(O)ll < € and F > Fy, lle*)ll < 8(¢) for all finite time t.

Proof: Consider first the case in which kel > 1/8. Then, under the
hypothesis of the thcorem, both the average and the PWM
controllers are saturated to the same extreme control values and
both systems descriptions entirely coincide. By virtue of the
continuity of solutions with respect to initial states, the theorem
holds obviously true. The case of interest is then represented by

lel < 1/B. Consider then :

(2.6)
k+T o+ ‘rB[e(‘k)]T
Xy . P =%y + f Ax(Ddt+ f BMsign e)(ty) dt
3% 3%
4+ T ke T
=y 4 T) =z(ty) + f Ax(t)dt+ f BM Sﬂﬂez((k) dt @
39 tx

withe;=yq-y=yd-Cx and e2=yq-Cz
Subtracting (2.7) from (2.6) and taking norms, one finds :

tisT
le* (g, T < He*(tll + f lAe*(Tidt

LY
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f‘knﬂ[e(tk)rr
+
t

L%
BM sign ¢)@tp)dt]{+ f
k

T
BM sa!Be2(tk)d¢
33

tesT ty+tglet PIT
Slle*ol + af lie*(Dilde +f IIBM sign e 1t dt

LY tk

tx+T
+[
3

Slie*(ll + af

L3
tgeT

lle*(Dildt + 2MbT

TBM sat peyt il do

w+T ®+T

le*(tlidt + f IIBM satg ex(ty)lidz

*®

Slle*(tll + aj

L 3

where a is the induced nom of A, b = lIBll and use was made of the fact
that for any vectors p and q, llp-qll Silpll + ligll. Using the Gronwall-
Bellamn lemma(Beckenbach and Bellman [13, pp. 134]) one obtains :

Be*(ty , DI € (le*(tll + 2MbT) eaT 2.8)

Using (2.8) recursively, from ty = 0, the following crude estimate the
norm of the vector discrepancy at time NT is readily established :

lc*(INT)lt < (lle*(0)ll + 2MN bT) eaNT
ie. :

le*(NT)lle - aNT < (le*(O)l + 2MN bT) 2.9

Let now lle*(0)il < € and suppose onc wishes to impose the bound :

lie*(NT)Ii < (14+A)e, on the discrepancy vector at time NT. With A being
an arbitrarily small, but positive, quantity. Then, it is easy to see that the
following transcendental equation, obtained directly from (2.9), has a
unique solution for some Tg>0:

(1 +Ake-aNT = (¢ + 2MN bT) (2.10)

Hence, given an initial discrepancy bound, lle*(O)ll < €, and an arbitrarily
small positive constant A, a sampling frequency Fo = 1/Tg exists for which

a preassigned error response bound 8, of the form & = (1 + A)e, can be
obtaincd for lle*(NTI, at any later finite time NT. The result follows.

The preceding result indirectly establishes that one can always find a
sufficiently large sampling fre(}uency in the PWM controller so that the
closed loop gutput responses of the average and actual PWM controlled
systems evolve arbitrarily close to edch other. The required sampling
fm}uency is always computable in termms of the systems parameters and the
desimd précision of the actual response with respect to that of an average
design. :

‘We point out that obtaining the required sampling frequency is largely a
matter of taste and it is highly dependent upon the particular necd at hand.
If precise simulations cans be afforded, the task of finding an appropriate
sampling frequency boils down to several educaied trials. For this reason,
we do not make further considerations about this issue and refer to (2.9) or
(2.10), if a precise calculation necds to be carried out. Instead, we

concentrate on the problem of specifying a stabilizing parameter f for the
actual PWM controller on the bagis of the corresponding stability features
of the average PWM closed loop system.

It is obviously clear that for the average design problem, in which a
suitable stabilizing gain f} is sought for the saturation block in the classical
configuration of figure 2, a vast numbcr of design techniques become
immediate available. Among these we find ¢ the Small Gain Theorem, the
Circle Criterion, the Popov Linc¢ Criterion, Tsypkin's Criterion, the
Describing Function Mcthod and many others. These methods are well
documented and readily found in the literature (see McFarlane [14] for a
complete review). We shall illusirate the use of some of these methods
through the examples provided in section IV.



II. The Frequency Domain Approach

In the following, we will show that a PWM wave can be expressed as a
frequency dependant sector [15). To show that, we develop a general
formula for the spectrum of an ON-OFF PWM wave, We assume such a
wave G(w) is built around a periodic clock signal of amplitude M, average
duration to and frequency F = I/T = Q/2x (Figure 3). We will also

assume that the duration 1(t) of the PWM wave vary according to the

modulating excitation signal m(t) = sinwt, so that 1(t) = To + Km(t) in -

which K < 15 is a constant. The Fourier series of such a wave will be :

=Mup+ My T safnQ
80 =Muy+ 2 m)nzlsa(2 ) cos
in which the sampling function sa() mepresemM .

We write ;

{ jmr(o}
Mm)sa(ngm))=m..1m e 2

= A1y [ejoeinm()]
nr

where a:%l , and y=QZK . Using the properties of Bessel functions

[16], we get for m(t) = sinowt

ejnysinot = E Jmpe jnet
k=0

where Ji(-) represents the Bessel function of order k. Therefore,

§ Ji(ny) sin(net + ne) cos nO
=0

It follows that the spectrum G(w) includes an average D.C. value % a
fundamental frequency of amplitude MIIS and a cluster of frequency

components around n<2, at frequencies < + ke and of amplitude &M J K.
r

Figure 4 illustrates a typical spectrum which assume for simplicity that

Q>>a. As Jk(Y) <Jo(0) = 1 for any k, ¥, we deduce that the amplitude
of the spectrum of the PWM wave is always bounded by

max (Mtg/T, 2M/x)=2. From which we deduce that G(w) belongs to
the real sector (0, A) and has an L3 induced norm of :

’ 2 2 2
A=M &L%;gﬂ (seeam]dix)

Remarks

We have developed the frequency response of the ON-OFF PWM signal.
If we set 1o =0, K=, and g'(t) = g(t). sgn(t), and limit our interest
to one period of the modulating signal, we can derive a corresponding
frequency response for the ON-OFF-ON PWM signal,

We can also take into account a saturating effect whenever the amplitude k
of the input is higher than a given threshold f in the following manner.
Let p(t) be the unit pulse defined betwecn -0t/2 and o2, with a = 1/a
arcsin (1/BK). The input sine wave is than truncated by P(t) + P(-t) for
P(t) = P(t-0/2) + P(t-n/o> + 0/2). The remaining part has a saturation
value M whenever P(t) + P(-t) # 1 within the interval [-x/®, ®*/®]. The
0! nding frequency response is a convolution product, and an upper

bound on the induced norm can be easily derived. This could be used for
the application of the small gain theorem.
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IV. Stability Results

The following stability results are based on the small gain theorem and the
positivity thcorem (17]. Consider the system in Figure 3 in which G is
some linear operator represented by its frequency response G(@) and H is
a PWM modulator whose sector is (0,A).

Theorem 2

The system is stable provided the Hoo nom of AG(®) is smaller than
unity.

This is a direct application of the small gain theorem, which can be
interpreted graphically by the Circle Criterion.

Theorem 3

Assuming 1 - A liGile, > 0, the system is stable.

Indecd, the positivity of (1 - A liGlleo) ensures that (1 + GH) is invertible
as llell €0 r + GHell < lirdl + {IGl . iHII llell leads to llell S (I -

IGH-IHNY-1 liel. Such a criterion is less conservative than the circle
criterion,

V. Sensitivity Results

Moreover, we can extrapolate a result regarding the sensitivity bound of
the system represented in Figure S. Considering the error signal
e=r--Hy, y=He, we can deduce the following inequality which
shows the effect of the sector A on the overall sensitivity bound,

llell < [1 - G - -1 et '

=[1-AIGIT irl

VI. The Multivariable Case

We now consider that, in Figure 3, G is a matrix of strictly proper
frequency responses and H might be a multivariable matrix of PWM
modulators ; typically H would be a diagonal matrix. We assume that all
inputs are of finite energy, i.e. they belong to L3.

Each of the PWM modulators has belongs to a sector (O,Aij), the Ly
induced norm of which is Ajj. The induced norm of the matrix H is

defined to be {18,19] the maximal singular value nom of the matrix ﬁ
whose entries are Ajj. Similarly, the L2 induced norm of the n x » matrix

G(w) is the supremum over all frequencies of its maximum singular values
which is the multivariable Ho. norm, while the n x n matrix a represents
the matrix where entries are the Hoo nom of the entries of G(w).

We define E to be the vector whose entries are llejll, i=1, ...n and
similarly, R = (lirgh, lir2il, ...irg)T, as in [6), so that :

E<SR+IGll-IHIE
Theorem 4
If IIGI - IIHHl < 1, the system is stable.
Theorem -5
1£ (1 - FiG) is an M matrix, the system is stable.
Theorems 4 and 5 are a direct application of [18,19]. Moreover, the
sensitivity bound can be easily got. An adequate choice of parameters of
H could indeed reduce the sensitivity upperbound.

VIIL. Elastic Joint Manipulator

Albert and Spong [21] proposed the following linearized version of a
single link elastic manipulator controlled by a PD scheme based on motor
position fecdback (see Figure 6).

¥(8) =Kp(1 + Tps) e(s)

e(s) = yg - m(s) (€3



(1352 +Bs+k)

Bm(s) =
(Ims2 + Bs + K{J;s2+ B s + k) - k2

where B} and By, are respectively the viscous friction coefficients
associated to the link and the motor, k is the elastic torsion coefficient
modeling the non-rigid coupling among the motor and the link, 8y, is the
motor angular position, yq is a desired final angular position, and Kp and
T4 are the PD controller parameters.

A PWM controller block is to be inserted between the compensated error
output y(s) and the input u(s). We let G(s) denote the open loop transfer
function relating y(s) to u(s) in (3.1) with ya=- 0. An application of the
circle criterion [14, pp. 188-195] readily yields the necessary gain B of the
saturation block in the average PWM model of the closed loop system.
For the particular saturation non linearity, the critical disk in the complex
plane degenerates into an unbounded plane to the left of the vertical line
Re(s) < -1/B. A sufficient condition for asymptotic stability is then given
by :

Re G(jw)+ 1/8>0 (3.2)

‘The Popov stability criterion (sec [14, pp. 163-181]), on the other hand,
establishes that if 2 linear stable plant with transfer function G(s) is being
fedback by a memoryless nonlinearity, bounded by a secior with slopes 0
and B > O (notice that such is the casé of the saturation nonlinearity
representing the average PWM operator), then the closed loop system is

asymptotically stable for all 0 < B < kpy if there exists a positive constant a,
such that the Nyquist plot of the modified transfer function G*(jw) =
ReG(jw) + jwImG(jw) = X + jY (known as the Popov plot) lies entirely to
the right of the (Popov) line : X - aY + 1/kyy = 0, in the complex plane
XY.

Figure 4 shows the real part of G(jw), as a function of w, for the
following manipulator coefficients [15]: Bj = 0 N.m.s/rad,

Bm =0.015 N.m.s/rad, J) =Jp = 0.0004 N.m.s2/rad,
k =0.8 N.m/rad, Kp=0.105 and Tp =0.005. The region of

admissible values for -1/B is also depicted in Figure 7 -p-1 < -0.3383,

i.e. B <2.9557 is sufficient to guaraniec an asymptotically stable design).
Figure 8 shows simulated state trajectory responses for the average PWM

controlled plant using several values of the PWM gain parameter BB = 1,

B=5, B =10). Notice that as B increases the system remains stable but
elastic modes excitation leads to a poor damped, or highly oscillatory, link
position response.

It can be shown, using the Popov line criterion [14] that an infinite gain is
possible (see Figure 6 where the Popov plot is shown for the open loop
transfer function G(s) of the motor-link system and a Popov line

candidate). It is easy to see that for a high gain B, the saturation block
nears the description of an ideal switch and a Variable Structure Controlled
system is obtained. The average system exhibits then a sliding regime
around y =0 with asymptotically stable motor position dynamics
govemned by the eigenvalue -1/T4. (i.e., from e=0 in (3.1) the
asymptotically  stable ideal sliding dynamics,

dBm/dt = - (1/Td)(Bm - yd). is readily obtained). In such a case, the
link position trajectory becomes an "almost” pure harmonic oscillation,

From the simulations in Figure 5, b was chosen as b= 1. An appropriate
PWM sampling frequency was found to be that of 100 samples per
second. Figure 10a shows the simulated step responses for the motor
angular position and the link angular position in the actual PWM controlled
system. The desired angular position ref e was set to 1 rad. Figure
10b shows superimposed trajectories of the actual and the average PWM
conirolled plants in the link phase space. The discrepancy among these
curves is negligible. Figure 10c shows superimposed trajcctories of the
actual and the average PWM controlled plants in the motor phase space.
The existence of a sliding regime about the average trajectories is clearly
protracted in this figure. The reason for which such a sliding motion
(chatiering) is not observed in the link phase space of Figure 10b is due to
smoothing of the discontinuous control action through the motor
dynamics.

IX. Conclusions and Suggestions for Further Research

An infinite frequency average model of linear PWM controlled systems
was shown (o capture the essential (stability) properties of the actual PWM
controlled plants while allowing a more exact analysis of the closed loop
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characteristics of the controlled system. The result directly leads to making
available a vast amount of classical design techniques for the specification
of an important parameter defining the PWM controller,- An implicit
estimate was also fumished of the required PWM sampling frequency
which guarantecs a pre-specified small discrepancy among the actual and
the PWM controlled responses. This estimate, however, requires
knowledge of any state space realization of the controlled plant and the
solution of a simple scalar transcendental equation.

The results here presented hold valid in the case of nonlinear controlled
plants (see Sira-Ramirez [23)) even if these include finite time delays (Sira-
Ramirez [24]). One may wish to extend the results here presented to the
multivariable case (Bensoussan [18-19]), and to explore further
connections with He control theory [25].

X. Appendix

Using Jx(ny) sin(®t + na) cos nQt = J(ny)/2 [cos(nQ + nwt + nor) +
cos(n€2 - n® - naw), and the two identities :

3
K=

2, 1 51‘2
J ﬂy)= 1 and, =
0 i §n2 8

we deduce the L, norm of the output to be :

A M+ P

for a corresponding L, nom of the input of (2'1/2) from which we get the
induced norm :

K2+223+212
[V

In practice, the higher harmonics of the PWM wave would have to be
neglected as we restrict ourselves to a finite operational bandwidth and the
induced norm will be viewed as an upper bound rather than an exact value.
However, in the case of two sine inputs of frequencies f) and f2, and
corresponding constants y; and y2, the spectrum is enriched by

intermodulation products, as the output spectrum includes the harmonics at
F+kf],F+ify, k,I=0,.. 0 as well as intermodulation frequencies

F + kf + 1 f2 with amplitudes ﬁi-.lk(n i),

A=M
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