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Abstract In this article, the use of dynamical
discontinuous feadback control strategles, such as
sliding modes, pulse width modulation, and pulse
frequency modulation, are proposed for the
asymptlotic stabilization of nonlinear dynamical
systems describing chemical processes. Illustrative
Continuously Stirred Tank Reactor controller design
examples, using the various proposed schemes, are
provided including computer simulations.

1.INTRODUCTION

Recently, results from the &/Mrential alyalvar
approach to control theory, pioneered by Prof. Michel
Fliess {1)-[2] have greatly improved the applicability
of discontinuous feedback strategies, specially those
of the s/rding mode(SM) type, leading to asymptotic
stabilization, and tracking, in nonlinear systems
(see Sira-Ramirez [3)-[4] for applications to
mechanical and electro-mechanical systems). Some
of the traditional disadvantages of sliding mode
control policies are fundamentally related to the
chattering of input and state variables response
signals (See Utkin [5D. These difficulties are easily
circumvented via dyvnamica/sliding mode controllers
while retaining the outstanding robustness, and
simplicity, of this class of feedback control schemes.

In this article, Fliess's Generalized Observa-
bility Canonical Form (GOCF) is shown to naturally
allow for dynamical feedback controller design based
on pulse-width-modulation (PWM) strategies and
pulse-frequency-modulation (PFM) policies. As in the
SM control case, the obtained control input signals
are substantially smoothed and, hence, the possibility
clearly exists for chattering-free controlled
responses, The obtained PWM and PFM controller
designs do not resort to traditional approximation
schemes, based on (infinte frequency) asverage
models, of the discontinuously controlied systems

(see, Sira-Ramirez [6]). These features are
particularly important in chemical process control
problems, in which large and fast input vibrations, or
jump discontinuities, cannot be simply allowed on
the actuators, while a need still exists for certain
degree of robustness and precision of the proposed
control scheme. This is particularly the case of
pneumatic and -mechanically driven valves and
dispensers, extensively usecf by many chemical
industries today.
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The synthesis of the several dynamical
discontinuous regulators, here proposed, is entirely
based on Fliess' Generslired Obearvabiity Canonical
Form (GOCF) for nonlinear systems (See [2]. In
Section 2 of this article, we briefly review the
dynamical SM control solution to the outlgul
stabilization problem and present the PWM and PFM
controller design schemes. In section 3, we present
an application example on which wa test each one of
the proposed discontinuous control techniques
mentioned above. The application example, taken
from Kravaris and Palanki [7] is concerned with the
total concentration regulation in an isothermal
Continuously Stirred Tank Reactor (CSTR). The
presented design examples include computer
simulations. Concluding remarks, and proposals for
further work, are collected at the end of the article,
in Section 4.

2. DYNAMICAL DISCONTINOUS FEEDBACK
CONTROL OF NONLINEAR SYSTEMS

The results of this section are easily extended to
tracking problems (see {3)[4] ) and to multivariable
cawes.

2.1 Fliess's Generalizsod Observability Canonical
Form.

It has boen shown in  [2] (see also Conte e &/ [8]
) that a nonlinear, single-input single-output n-
dimensional analytic system of the form:

% = f(x,u)
y = h(x) @b

can be locally transformed, via an input dependent

gtate coordinate transformation of the form :
z=d(x,0.0,... u0@D) (2.2)

into a system of the form:
i] =7 .
=g
(2.3)

z, = ¢(z,u,4,...,ul@)
y=x

provided the following "obeervability” matrix of the
system (2.1) is full rank:
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In (2.3), the integer «a is assumed to be a strictly
positive integer ( for extension of the results to avecty
lLinearizable systoms by static state foedback lLe., for
- those systems in which a = 0, the reader is refered to
Sira-Ramirez [9]). It should be remarked, however,
that, in general, (2.3) may not be, necessarily,
n-dimensional. Our assumption, thus corresponds to
one of a nunimal realtrationon (2.1).

The state coordinate transformation (2.2) is
evidently given by the local diffeomorphism:
h(x)

h“)(l)

z = ®(x,u,u,...,u@ D) = 2.5)

h™-U(x,u,u,...,uf@-1)

Suppoee u = U, x = X(U) describes a constant
equilibrium point for the original system (2.1), such

that h(X()) s 2ero, then z = O Is an equilibrium point

of (23). The autonomous dynamics described by:
c(0,u,4,...,u@) =0 (2.6)

is the #9r0 dynemiscs (sea Fliess [10] ). The stability
nature of an equilibium point u = U of (2.6)
determines the minimun: or nan-minimum phase
character of the system at the corresponding
equilibrium point. We denote the above constant
equilibrium point for system (2.1) as (X(U),U,0).

2.2 A GOCF Approach to Dynamical Discontinuous
Feedback Controller Design for Nonlinear Systems.

Consider the following auxiliary output

function ¢ : Rn -> R, defined in terms of the
transformed variables z,

n-1
o(z) =(‘Z vm) tz @7

i=l

such that the following corresponding polynomial in
the complex variable s is Hurwitz: 8 poly
1

n-
E Yisi-! + gn-1 (2.8)
i=l

It is easy to see that, provided the system is

locally minimum phase, and if (2.7) is forcefully
constrained to zero (whether in finite ime, or in an
asymptotically stable fashion) by means of
appropriate control actions (possibly of discontinuous
nature), the resulting controlled dynamics locally
evolves in accordance with;

=2
=z
. (2.9)
n-|
Ty ='Z Y%
iwl

y=z

which is asymptotically stable to 2ero.

The various dynamical discontinuous fesdback
controller design schemes here proposed rely on
inducing an asymptotically stable linear time
invariant controlled dynamics such as (29), with
eigenvalues placeable at will, by driving the proposed
auxiliary output function o(z) to zero. SM controllers
can always accomplish such a task in fipite time,
PWM and PFM controllers, on the other hand, can
only accomplish this task in an asymptotially stable
fashion.

Dynamical Sliding Mode Control of Nonlinear
Systems

Proposition 21 lLet W be a strictly positive quantity
and let "sgn" stand for the sgznmm function. one
dimensional discontinuous system :

o=-Wsgno (2.10)

globally exhibits a sliding regime on ¢ = 0.
Furthermore, any trajectory starting on the value o =
a(0), at ime 0, reaches the condition o = 0 in finite
time T, glven by : T = W-1| o(0) | .

Proof Immediate upon checking that globally: ¢ do/dt

*« 0 for o ¢ 0, which is a well known condition for

sliding mode existence [5]). The second part follows
trivially from the factthat |o(t) =-Wt+!1o(0)] @

Ex%gmmn_zz A minimum phase nonlinear system
of the form (2.1) is locally asymptotically stabilizable
to the equilibrium point (U X(),0) if the control
action u is specified a3 a dynamical SM control policy
given by the solution of the following implicit,
time-varying, nonlinear discontinuous differential
equation :

n n-|
c(z,u, - @) = -Z Yiizi-W ;8n[2 Yizi + Zq]
i=l i=1 (2.11)
where vy = 0.

Proof Immediate upon imposing on the auxiliary

output function o(2) in (2.7) the discontinuous
dynamics defined by (2.10). L ]

- We assumed that in (2.11) the quantity dc/aul(®
is locally nonzero and, hence, no singularities need to
be locally considered.

Controller (2.11) is easily represented in terms
of the original state space coordinates x by using the
input dependent coordinate transformation (25).

Dynamical PFM Control of Nonlinear Systems

Consider the scalar PFM controlled dynamical
system, in which the constants ry,r,r3 and W,

are all strictly positive quantities.
a=-Wy

sgn o) for ty St<y + o(t)ITlo(t))
0 for &+ fo()ITlo@)l S t <4 +Tlo(ty)]

1 for | oft)| >;IL

v=PM; 1(0)=

tlo®)) =
n fottf for o] < L



Taws for o] 2 L
TIo®) ={ Tain * 252 [Taur-Tuin) (0O for L <Joty] < -

r-n fy
Tain forlo)] $ L
k=012,.. ; b,1=t+TloC}

(212)

where it is assumed that ry < ry< ry. The s

represent irragularly spaced sampling instants,
determined by the sampled values of the ay crc/e

function, denoted here by T(o(t)). The duty cycle
" function, T{o(t)], takes values on the closed interval
[Tmiw Temad and it varies linearly with respect to o(t)
in the region ¢! < lry. The duty cycle, or sampling
period, saturates to T, for large values of o, and
remains fixed at the constant lower bound Ty, for
small values of o. At each sampling instant, t, , the
value of the width of the sign-modulated, unit

amplitude, control pulse is determined by the
sampled value of the asty ratio Aunction represented

by tlo(ty)). In general, the duty cycle and the duty

ratio functions may be quite independent of each
other. The function “sgn" stands for the signum
function.

The following proposition establishes a
sufficlent condition for the nsym&todc stability to aero
of the PFM controlled system (2.12).

Proposition 2.3 The PFM controlled system (2.12) is
asymptotically stable to ¢ = 0, if

0<ryWThpe <2 (2.13)

Broof Due to the plecewise constant nature of the
control inputs and the linearity of the continuous
system, it suffices to study the stability of the
discretized version of (2.12) at the sampling instants.
An exact discretization of the PFM controlled system
(2.12) ylelds :

o(t+T)= o(t) - Wegn{o(k)] rlo(u)] Tlo(k)]  (2.14)

Suppose the initial condition o(0) is chosen deep
into the region lal > 1/r,. The evolution of the
sampled values of o(t) obey, according to (2.14):

ot *T)= o) - W Trnax for o(te) > 0

O+ )= (1) + W Tey forof) <0 (215)

Hence, given an arbitrary initial condition o(0) for o,
it is obvious from (2.15) that the condition : 0 <
r3WTna < 2 I8 sufficient to ensure that the value of

o(ty) will be eventually found within the bounded
region ol < l/r;. This is due to the fact that the
controlled increments taken by o(t,), in the

considered region lal » Ur,, are of width WT nax
and, therefore, the condition: WT,,,, < 2/r; also

guarantees that WTy,, < 2/rz . It follows that o(t,) can
not ‘jump” over the band ! < l/r;and, hence, oft,)
will land on this region for sufficiently large k. Two
possibilities arise then : either o(t,) is found in the

"band” Ury < lo(t)! < 1/ry, or o(ly) satisfies | o(t,) <
Vry . Suppose first that: 1iry < | a(ty)! < Lry, for some

k. In this region, the value of Ilo(t,)! can only
further decrease. as it is easily seen from (2.13).

Indeed, the increments: Ao(ty) = o(ty,;) - o(ty), taken
by o in the region Liry < | o | <Ur;, satisfy: Wl <
lAo(ty)! < WT.e Since, by assumption, WTpyy <
2/r3, then one has : Wy, < 1A0(t)| < Wy <2/r3 <
2lo(t)]. It follows that lo(t)! further decreases
and that the controlled evolution of o(ty will
eventually reach the region: lo(t)! < Vr;. In this
last region the sampled values of o evolve satisfying :

ol +T)= o(t) - 1 W Tmin 3gn{o(t) kot
= (1-ryW Tpnin) 0(t)

which is asymptotically stable to zero, if and only if : 0
< 1{WTmin < 2. This last condition is evidently

equivalent to WTp,, < 2/r;. Notice, howaver, that from

the assumptions about the parameters in (2.12) :
WT in € WTnax < 213 < 21y L, the condition (2.13)

implies the asymptotical stability requirement for
(2.12). The result follows. ]

Enx.gﬂﬁan.ZA A minimum phase nonlinear system
of form (2.1) is locally asymptotically stabilizable
to the equilibrium point (U X(U),0) if the control
action u is specified as a dynamical PFM control
policy given by the solution of the following implicit,
time-varying, nonlinear discontinuous differential

equation : .
n ‘ n-
(2,00, u@) =-Y vz - WPPMr 1), Vi + )
=l

" 216
where v, = 0.

Dynamical PWM Control of Nonlinear Systerog

Consider the scalar PWM controlled system, in
whichr>0and W>0:

o=-Wyv

. o | o) for kSt<y+o)T

Y PWMT(U) 0 for ‘k”ﬂo('k)lTSt<‘i+T (2 17)
tfor Jol > 1 ‘

ro(t)] =

rlow] for low] < 1

k=012,.. 1 tg4p=ty+T.
where the ty's represent regularly spaced sampling
instants and "sgn" stands for the gmur? Amction.

It is easy to sec that (2.17) is just a particular
case of the PFM controlled system (2.12) in which the
duty cycle function T(o(ty)) is now taken as a constant

of value T. The following results follow immediately
from this fact.

Proposition 2.5 The PWM controlled system (2.17) is
asymptotically stable to o = 0 if and only if:

0<rWT <2 (2.18)

Proof Sufficiency is clear from the preceeding
proposition. Necesity follows from the fact that (2.18)

is necessary to have o(ty) lie in the region | o(t,) <
Ur, for some k, independently of the initial condition.
In this region, the PWM controlled dynamics adopts
the fom  o(ty,1)) = (1-rWT) o(ty). The result
follows. [}



Proposition 26 A minimum phase nonlinear system
of the form (2.1) is locally asymptotically stabilizable
to the equilibrium point (U,X(U)0) if the control
action u s specified as & dynamical PWM control
policy given by the sohstion of the following implicit,
time-varying, nonlinear discontinuous differential
equation :

n n-1
o(z,u, - M@) %Y iz - WPWML Y vizi ¢ za)
= SR 1)

where v = 0.

Proof Immediate upon imposing on the auxiliary
output function o(2) In (27) the asymptotically stable
discontinuous dynamics defined by (2.17).

3. AN APPLICATION EXAMPLE

3.1 Dynamical Discontinuous Controller Design for
Regulation of Total Concentration in a Continuously
Stirred Tank Reactor.

Consider the following simple nonlinear
dynamical model of a controlled CSTR in which an
isothermal, liquid-phase, multicomponent chemical
reaction takes place (see {7] ):

Xj=-(1+Dy)x; + u
X3 = Dy x) - x2- Dyaxd

y=x3 +x2-Y

(a.1)

Where x; represents the normalized
(dimensionless) concentration Cp/Cpy of a certain
species P in the reactor, with Y = Cpg being the
desired concentration of the species P and Q
measured in mol.m3. The state variable x,
represents the normalized concentration Cg Cpg of
the species Q. The control variable u is defined as the
ratio of the per-unit volumetric molar feed rate of
species P, denoted by Npp , and the desired
concentration Cpy . i.e, u = Npp/(FCpy) where F is
the volumetric feed rate in m3 s'1. The constants D,;
and D,; are respectively defined as k,V/F and
kaVCpo/F  with V being the volume of the reactor, in
m3, and k, and k; are the first order rate constants.
in gl .

It is assumed that the species Q s highly acidic
while the reactant species R is neutral. In order to
avoid corrosion problems in the downstream
equipment, it is desired to regulate the total
concentration y to a prescribed set-point value
specified by the constant Y. It is assumed that the
control variable u is naturally bounded in the closed
interval [0, U,,,] reflecting the bounded (physical)
limits of molar feed rate of the species P.

It is easy to verify that for the given system
(3.1), the rank of the following 2 by 2 matrix:

dy
Ix 1
oy -1
Ox

S= (3.2)

|
«(1+2D,2x2) ]

is everywhere equal to 2, except on the line x; = 0
which is devoid of practical significanca.

A stable constant equilibrium point for this
system is given by :

. = U .
u=U.X|(U)—(l.D”) v

+19u!2.z£]
0 = gl 1o R

It is easy to verify, by computing the linearized
transfer function on the given equilibrium point, that
the above system is indesd minimum phase. The
following input-dependent state coordinate
transformation :

3.3)

zy=x; ¢ x2-Y (3.4)
B=-x -x2-Dyxd +u

allows onae to obtain a GOCF for the system in the
form given by (2.3). The inverse of this
transformation is simply written as :

fu-m+z+Y)
X]'Z']’Y D2
o = /u-(z, + 22+ Y)
2 D2

Notice that the quantity inside the square root in
(35) is never smaller than zero.

3.5)

In transformed coordinates, the system is

given by:
i =y .
- + +
i = 21Dy (1 *YF0+ 2008 DaiDugery) | BT
+ 204 (Mr + 21Dy u i
Da2
y=u

which is in GOCF.

The hidden, or mero dinamics assoclated to the
output nulling in (3.6) is given, according to (25), by:

36)

6+ 204DV - 20 DsaY |/ BT+ 20 /[8XF =0

It is easy to show that the constant equilibrium
point, u=U, corresponding to Y= X;(U)+Xx(U), as
computed from (3.3), is an asymptotically stable one.
The system is, hence, minimum phase around this
point. On the other hand u = is an unstable
equilibrium point for (3.7) which corresponds with a
non-minimum phase point.

Consider the following auxiliary output
function, with y; > 0
0=+ 38)
Notice that if o is zeroed by means of a
discontinuous control strategy, then, the response of
the output function y = £, is ideally governed by the
asymptotically stable linear autonomous dynamics :
2= vz 39
Lynamical Sliding Mode Controjler Design
Imposing on ¢ the asymptotically stable
discontinuous dynamics (2.10) one readily obtains, in
general, the following stabilizing dynamical sliding
mode controller is obtained:

U= 2(1+Dy o+ 214Dy 2+(342D0y-y1)2

* 20Dygtzy +Y) o LB
* Dz
- 203, Y/ (“(+:Q+Y) - W sign(z+v12,)

(3.10)



In original coordinates, the sliding surface o =
0 is, evidently, a control input dependent manifold
given by:

o(z)=0[d (xu)) -[-(Xl +X2) - Dyz X3 + 0 +yy (X14x3 - Y)]

(311)
The proposed dynamical "sliding mode
controller (3.10) adopts, in original coordinates, the

following expression:

G (- y)u - (1- X1 +X9) + 2Dy Daa %)%z - (3-¥))Dy2 X3
- 2D%, x3 -W sign[- (x)#x2) - Dy2 x3 ¢ u +yy (x1+x2 - Y)]

) 312)
Dynamical PFM Controller Design
Imposing on ¢ the asymptotically stable

discontinuous dynamics (2.12) one obtains, in
original coordinates :

= (1 y)u- (1 Vi)xi+x3) + 2Dy Dz X1% - (34102
- 203 x3 W PPMy 7[- (xi#x2) - Dua 3 + u +y (k2 - )]

(3.13)
Dynamical PWM Controller Design

The dynamical PWM controller has precisely
the same form as (3.13) except for the fact that a PWM
control function, as defined in (2.17), is used.

U= ~(F-y)u- (1- vidxitxz) + 2D, 1 Dya x(xg -(3-y) )04 X3
- Zofzxi -W PWM‘-[- (X1#X2) - Dya x8 + u +y, (X +X3 - Y)]

(3.19)
32 Simulation Results

Simulations were performed for a reactor
characterized by the following parameters:

Dy= 10 ;D= 10

The simulated control task considered an
output stabilization problem for the total normalized
concentration y in system (3.1) to a constant reference
value, Y = 3. This was accomplished by means of the
three dynamical discontinuous feedback controllers
proposed in this article.

Figure la. portrays the time responses of the
dynamical SM controlled output y, the chattering-free
input signal u and the corresponding controlled state
trajectories x) and x; . These variables are seen to
converge to their equilibrium values: y=0,u=U =4,
X1 2 Xq(4) = 2, %3 = Xx(4) = 1. Figure 1b. shows the
evolution of the sliding surface coordinates function
d. The parameter ¥ in the sliding surface (3.8) was

set to be y; = 1.0. The dynamical variable structure

controller parameter was set, in accordance to (2.10),
toW =1

Figure 2a. portrays the time responsos of the
dynamical PFM controlled output, the smoothed
input signal and the corresponding controlled state
trajectories. As before, these variables are seen to
converge to their equilibrium values. Figure 2b.
shows the evolution of the auxiliary output function

6. with defining parameter Y1 = 1.0, and the time
responses of the duty cylce function, T(o(t)), and the

duty ratio function (a(t)). The dynamical PFM
controller parameters were sot, in accordance to
212), oW =1,r; =1, r2=05r3=15 Ty, =086,
Tmin = 02

-5-

Figure 3a. depicts the time responses of the
output,lgmes and (smoothed) input variables for the
dynamical PWM controlled system. Figure 3. shows
the evolution of the auxiliary output function o, with

v1 = 10, and the time responses of the duty ratio

function t(o(t)). The dynamical PWM controller
parameters were set, in accordance to (2.17), to W =
1, r= 1, and sampling period : T= 05.

4. CONCLUSIONS

The feasibility of chattering-free discontinuous
feedback controllers has been demonstrated via
dynamical feedback strategies based on stabilization
of suitably specified auxiliary output functions
defined on the basis of Fliess GOCF. Stabilizing SM,
PWM and PFM controller design procedures for
nonlinear plants are unified via this technique which
is derived from bagic facts of the differential algebraic
approach to system dynamics. The results are easily
extendable to multivariable plants.
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Figure la. Output, states and input variables
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Figure 1b, Sliding Surface Coordinate evolution for
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Figure 2a. Output, states and input variables
. trajectories of dynamical PFM controlled CSTR .
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Figure 3a. Output, states and input variables
trajectories of dynamical PWM controlled CSTR .
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Figure 3b. Evolution of Auxliary Output Function,
and Duty Ratio Function for dynamical PWM
controlled CSTR. .



