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Abstract The design of stabilizing Pulse-Frequency- Modulation
(PFM) controllers 1 addressed, in all generality, for the case of
nonlinear single-input single-output analytic systems. Both, static
and dynamical PFM control strategies are developed, in full detail,
on the basis of an elementary scalar system result. Some Illustrative
design examples are provided.

1. INTRODUCTION

Pulse-Frequency-Modulation (PFM) feedback comroll

strategies have been relatively litte studied in the second half of this

century. The main references in this area are constituted by the .
works of Skoog [1] , Skoog and Blankenship [2], Frank (3] and.

Frank and Wiecchmann [4] where many early references can be
found. These works are all centered around the case of linear
time-invariant systems. To our knowledge, no further extensions of
these works, to the nonlincar case, were pursued later on.

In this article, we present a general design method for
synthesizing static and dynamical PFM feedback control laws
stabilizing to a constant equilibrium point any minimum phase
single-input single-output nonlinear dynamical system. A static PFM
controller is proposed which asymptotically zeroes a suitably
designed auxiliary scalar output function with the property that the
restricted PFM controlled dynamics results, in turn, in an asymptotic
stabilization of the original system output. The static controller case
is dealt via Normal Canonical Forms (Isidori [5)). Being a
discontinuous feedback regulation policy, static PFM controllers
may induce undesirable chattering in the obtained controlled
responses, This is due to the high frequency bang-bang character of
the synthesized control input signals. In this article, we effectively
circumvent this problem by also proposing dynamical PFM control
strategics. In the dynamical feedback alternative, continuous, instead
of bang-bang, feedback control signals are obtained which robustly
stabilize to a constant operating point the closed loop system,
without chanering effects on the controlled variables. The dynamical
PFM controller design is accomplished by first proposir;-g a static
PFM controller on the corresponding Normal Canonical Form of a
generaliud version of the extended system (Nijmeijer and Van der

chaft [6]). In contradistinction to the extended system, which only
uses one integrator before the input, the Generalized Extended
System _is obtained by adjoining to the original system input a
string of integrators of ength equal to the the dimension of the zero
dynamics of the original input-output system.

PFM control, much as its PWM particularization, constitutes a
robust feedback control policy due to its insensitivity to external
. disturbance inputs, certain immunity to model parameter variations,
within known bounds, and to the ever present modeling errors (see

n.

Section 2 presents a fundamental result on the PFM control of
an elementary scalar dynamical system. It is shown that an entire
nonlinear PEM controller design procedure, for higher order

nonlinear plants, may be based on this elementary result. Section 2

also introduces the general version of the extended system and
discusses some of its properties. The Normal Canonical Form of the
proposed generalized extended system is intimately relatedto
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Fliess'Generalized Observability Canonical Form (see Fliess [8] see
also Conte et al [9]). Section 3 is devoted to develop both a static
and a dynamical PFM control design scheme for nonlinear
minimum-phase systems. Section 4 presents an application example
drawn from chemical process control, a rather non-traditional
application area for discontinuous control techniques. Customarily,
discontinuous feedback control policies are not allowed in the
regulation of plants where flow rates are regarded as input variables,
This is due to the fact that bang-bang behavior of the main flow rate
control valve may severly limit the lifespan of the actuator, A
dynamical PFM controller design is then carried out for a a chemical

rocess control as an illustrative example in which smoothed (i.e.,
implementable) inputs are obtained.The dynamical feedback
viewpoint adopted in this article opens up new possibilities for
applications of discontinuous feedback control policies. The
conclusions of the article are collected in Section 5.

2. SOME FUNDAMENTAL RESULTS
2.1 PFM Control of a scalar system. »

Consider the scalar PFM controlled dynamical system, in
which the constants r ,ry, 13 and W, are all strictly positive
quantities.

§=-Wy
v=PFM; 1(s) =
sgns(t) for 4 St <ty + s TIs(t0]
0 for t+ t[s(t)ITIs(t)) S t < te+T{s(t))
1 for |s(®] > ilf

2.1
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where it is assumed that 1, <r;<r3. The 4's represent jrregularly
spaced sampling instants, determined by the sampled values of the
duty cycle function, denoted here by Tls(t). The duty cycle
function, T(s(t)], takes values on the closed interval [Tomins Trnaxl
and it varies linearly with respect to s(t) in the region Isl < 1/r. The
duty cycle, or sampling period, saturates to T max for large values of
s, and remains fixed at the constant lower bound T, for small



values of s. At each sampling instant, t, , the value of the width of

the sign-modulated, unit amplitude, control pulse is determined by

the sampled value of the duty ratio function, represented by s(ty)].

In general, the duty cycle and the duty ratio functions may be quite

}x;degendent of each other. The function "sgn" stands for the signum
nction:

+1 if >0
8gn(8) = (0 if s=0
-1if <0

The conditionr, < r| <r3 indicates that the pulse width, ¢, is
saturated to the value of the duty cycle, T, as long as the value of the
duty cycle is itself saturated to T,,,, (see figure 1). When the state,
8, of the scalar system is decreased, in absolute value, below the

boundary value 1/r; . the duty cycle, T, starts also decreasing, ina .

linear fashion with respect to s, while the pulse width temporarily
continues to be saturated to the same values adopted by T, If the
state s further decreases and reaches the interval [-1/r,1/r;] (notice
that 1/r; is intermediate between 1/r3 and 1/r; ), the pulse width also
starts decreasing linearly with respect to s, When the state s is finally
confined to the band [-1/r3,1/r;3], the duty cycle (sampling period)
reaches its minimum value Tp,;y,. In this region, the duty ratio still
continues to linearly decrease towards zero, even if the duty cycle is
already saturated to its minimum value T,

The following proposition establishes a sufficient condition for
the asymptotic stability to zero of the PFM controlicd system (2.1).

P ition 2.1
0 _'}"he PFM controlied system (2.1) is asymptotically stable to s
=0, i

0<r3WTpax <2 2.2)

Broof (sec 10] ).

2.2 Normal Canonical Forms and the Generalized
Extended System

2.2.1 The Normal Canenical Form [5]

Consider the analytical n-dimensional state varicole
representation of a single-input single-output system :

* x = F(x,u)
y = h(x)

which is assumed to have strong relative degree t ([5)). The integer

ris roughly defined as the minimum number of times that the scalar

output function y = h(x) must be differentiated, with respect to time,

so that the control input u appears explicitly in the derivative

expression, It is assumed that (2.3) exhibits a constant equilibrium

goint of interest characterized by F(X(U),U) = 0, for which
(X(U)) = 0. We refer to this point as (U,X(U),0).

Associated to the relative degree of the system one defines its
Normal Canonical Form as given by ((5]):

.3)

EimEiy 5 =12,..0-1

& = fEN)

N =qEn.u) .
y=&
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where 3f/du # 0, & = (&;,..., £,) and 1 = (n1.... o). It is assumed
that n-r is a positive integer. The case in which n = r corresponds

to the class of exactly input-output linearizable systems by means of

static state feedback. The design of a static stabilizing PFM

controller for this case requires no special consideration. However,
the dynamic PFM controller for such a case requires use of the
extended system as defined in [6)] .

The state coordinates transformation which yields the normal
canonical form (2.4) for the system (2.3) is given by:

(é»n) = 9(::) =[ h(x)-.h(x)m-h('-l)(x)- Pra1(x), 0, Qn(’z;]s)

where n; = 9r4j G=1,....n-1) is an arbitrary set of coordinate
functions which are functionally independent among themselves,

and also independent of the first r coordinates §, which are obtained
by repeated differentiation of the output function y = h(x).

Let there exist a (possibly discontinuous) feedback control law
u(&,n) = u(d(x)) which locally asymptotically stabilizes the system
trajectories to the manifold § = 0. The system (2.3) is said to be
locally minimum phase at a given equilibrium point F(X(U)) =
(0,n0) if the resulting autonomous set of nonlinear ordinary
differential equations represented by:

» 1 =q(0,n,u(0:n)) =: qo(n) 2.6
is locally asymptotically stable towards n0, otherwise the system is
said to be nonminimum phase (see [S]). The marginally stable case
is usually treated via Center Manifold theory (see also [5),
Appendix B). We assume, henceforth, that the given system is
locally minimum phase around the equilibrium point of interest.

2.2.2 The Generalized Extended System

Consider the nonlinear stystem (2.3). One defines a
Generalized Extended System of (2.3), as the 2n-r dimensional
system obtained by placing a chain of n-r integrators before the

original system input u, and feeding the resulting system by an
external auxi’"wry input signal v, i.c.,

’t‘ = F(XXq41)
Roej = Xnsje1 5 J =1,2,0,041-1
n+j ™ Xnsjel 5 ) @n
Xonr=v
y=h(x)
The extended system, as defined in [6], onlj requires placing a

single integrator before the input u, regardless of the value of the
relative degree of the system.

. The following state coordinate transformation takes the 2n-r
dimensional system (2.7) into normal canonical form :
(Eyﬂ) = Q(X,Xn+1:X0+2, ** * X2ner) =
i h(x)
- h(x)

= 2.8)

HO(X,Xq41)

hOD(X Xny 1 Xn42, *+ + X20.1)

It ¢n+1(x)

L $2n.(x) i
where:

~

§ - (§lv‘ ’ '.§n §r+l" &n) =, Eury - -,En)
ni= (¢n+lv‘ * 'v¢2n-l‘)



Notice that the state coordinate functions; ¢; (j = n+1,.,.,2n-r)
may be chosen in precisely the same way as the n's were chosen, in
(2.;). when the normal canonical form of the original system (2.3)
was obtained. The components of n are, then, set independently of
the first r coordinate components comprising the vector &. It should
be obvious that if the n's, in (2.8), are chosen in this manner, they
are also independent of the new set of extra state coordinates ;1.
&, and the transformation (2.8) is full rank.

The normal canonical form of system (2.7) is, therefore,
given by: .
§i=8iv 3i=l2..01

£ = cEMY) @9)
ﬁ L q@lv b {lv 'ﬂ)
y=&

Notice that the dimension, and the form of the muations, of

the zero dynamics, associated to the generalized extended system,

are not altered with respect to those of the original system. This

;eve?;s] the invariance of the zero dynamics, which is a well known
act {5).

In order to be able to solve, even if in a local sense, for the -
auxiliary control input v on any relation involving the function
c(€m,v), it is assumed that dc/dv # 0 in the region of interest. This
is equivalent to avoiding the regions where impasse points may exist
for the traditional definition of the state of a dynamical controller,
g:nvlec)i on the basis of (2.9) (sce Fliess and Hasler [11] for related

tails).

3. STATIC AND DYNAMICAL PFM CONTROL OF
NONLINEAR SYSTEMS

3.1. Static PFM Control of Nonlinear Systems,
Let p(1) be an (r-1)th order Hurwitz polynomial with constant

coefficients:
PR =A v a A P radta, - G)

Associated to this polynomial, consider the following auxiliary
output function of the system (2.3):

s=&r+a &g+ ragfy+ag) (3.2

It should be evident that if the condition s = 0 is achieved by
means of appropriate contro] actions, the restricted motions of the
minimum phase system (2.3) satisfy the following asymptotically
stable time-invariant linear dynamics:

éi = 8oy s i =1,2,0,02

&y =-arider - - b2 - aidy

The following proposition is on¢ of the main results of this
_article and a direct consequence of the above considerations and of
Proposition 2.1,

Bzoéms.iﬁnn_ll A minimum phase nonlinear system of the form
(2.6) is locally asymptotically stable to the equilibrium point
(U,X(U),0) if the control action u is specified as a static PFM
control policy given by the solution of the following implicit

algebraic equation :

33)

fEN0) =-Y siiki-WPEM, i3 s8] (4)

iml i=]

where ag=0, anda = 1.

Proof
iate upon imposing on the auxiliary output function s(&)

Immedi
in (3.2) the asymptotically stable discontinuous PFM dynamics
defined by (2.1). |

In original coordinates, the implicit static PFM contmllcr.b
given by (3.4), is expressed as:

f(@(x),u) = i 8.1hD(x) - WPFM, Li nih‘“’(X)]
il e ]
3.5

Notice that by virtue of the strong relative degree assumption
on (2.3), one globally has : 9f/du # 0. By invoking the Implicit
Function theorem, one concludes that there always exist a locally
unique solution of (3.4), or of (3.5), for the control input function
u.

3.2. Dynamicat PFM Control of Nonlinear Systems.

Let p(A) be an (n-1)th order Hurwitz polynomial with constant
coefficients:

P = A" 42 A" 24 agh 4 gy (3.6)

Consider now the following auxiliary output function of the
system (2.3):

S(E) =8 +2g €ng +oo +agbn + gy (3.7

As before, if the condition s = 0 is achieved by means of
suitable controls, the restricted motions of the generalized extended
system (2.7) satisfy the following asymptotically stable linear
time-invariant dynamics:

Ei=&in ; 1=12,.,n2

Ent =- 85.180.1 S a5, - i€,

The following proposition is a direct consequence of the
preceding considerations and of Proposition 2.1.

h%msiugn_l_z A minimum rhase nonlinear system of the form
2.3)is localg asymptotically stable to the equilibrium point
(U,X(U),0) if the control action u is specified as a dynamical PFM
control policy given, with slight abuse of notation, by the solution
of the following implicit, time-varying, nonlinear discontinuous
differential equation :

(3.8)

c(@(x)'u.\i' D00 ’u(n'l’)) =

'2 ai-lh(i-l)(x)' i .i-lh(i'l)(x'uvﬁ" * .,u(i-l'-l)) (3'9)
i=] =T+l

-W PFM:1 [i ah@D0x) + i a;hG-D(x,u,0, - -,u(i"-l))]

i=l i=r+1

where 3y =0, anda, = 1.

Proof

Imposing on the auxiliary output function s(&), given in (3.7),
the asymptotically stable discontinuous PFM controlled dynamics
defined by (2.1), one immediately obtains an implicit PFM static
controller for v, in terms of the transformed state variables. In
??gi)nal state.and input coordinates the controller adopts the form

Notice that one cannot, in general, assume that a global state
variable representation exists for the dynamics of tﬁc implicit
controller given b{ (3.10). Asit is now known from the differential
algebraic approach to system analysis, state variable representations
are only locall ‘geossiblc, in general (see the outstanding work of
Fliess [12], an references therein).



4. AN APPLICATION EXAMPLE

Example (A Dynamical PFM Control Approaéh for Concentration
Control in an Exothermic Continuously Stirred Tank Reactor).

Consider the following nonlinear dynamical controlled model
of an exothermic reaction occuring inside a CSTR (see Parrish and
Brosilov [13]), where the control objective is to regulate the outlet
concentration through manipulation of the water jacket temperature :

%1 = £ (co ) -axie b

X3 = % (To- x3) + 'cl; xle"’/’lz- '\_lhc; (xz-v)
. @n
y=x2-T'

Where x; represents the product concentration. The state
variable x; represents the reactor temperature. The control variable u
is the water jacket temperature. F is the reactor throughput in 1b/hr,
¢p is the inlet flow concentration in Ib/lb, Ty is the inlet flow
temperature measured in deg.R, cp is the material heat capacity in
BTU/Ib.R while V and L are, respectively, the reactor holdup (in
1b.) and the heat of the reaction (in BTU/D.) . The constant h is the
heat transfer parameter (in BTU/hr.R) , b is the activation constant
(in deg R) and a is the pre-exponential factor in hr-!, A constant
temperature T is to be stably maintained to indirectly control the
product concentration x; to its constant equilibrium value X;.

A stable constant equilibrium point for this system is then
givenby:

aT;x =X .__%_._.;
X2 X1 (T 1 Vi Vi

= u'l'.gi ALV cet™r T
u=U(T) 1 (To-T) i ” Vi 7

We next summarize the design procedure leading to a
dynamical stabilizing PFM controller for system (4.1), based on the
extended model. As it is easily verified the relative degree of the
system (4.1) is equal to one and, hence, the dimension of the zero

lynamics is alsoone. . -

Extended System Model of CSTR
X = 5 (co- xp) -axe-bha o
X2 = % (To- x1) + %!;xle"’/"’- th; (x2-x3)

“4.2)

X3 4.3)
y=x-T

State Coordinate Transformation to Normal Canonical Form for t
Extended System.

&1 =x2-T .

Gx §Toxtlxethe-ocoxy) 4o

N=x3 . : ’ .
xi w2 oMenT) {ez -Em T+ v"c; €1+T-h)
x2=Ei+T : 4.5
x3=N

Normal Canonical Form of the Extended System
b=t
éz = 'cl; e‘b/th*-'l')

- 3
['\F;co - afL?—e 51+T) 5 l+¥ae b’ttnﬂ%m)

(F,z -E @ TE) + \J,';;@.w iy )) ]

Ve @.6)

s=Er+aiE1 ; a4 > O\ 4.7

E =il 4.8)
Statio PFM Controller for the Extended System
o0 V_:z (-%M&wr) [Eco
¢ + ' 3 1+1)e g '
-;fM:l T) {,i(u%u%: 7). B g,:'r)’)
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+ (5* V%; - 1) & -WPFMc1{s®)

) 4.9
, ically Stable Zero Dvnarmi
n= -{,’-(l%ae-bfl‘) "
145 () + LY.
[ﬂ T+ @D+ 1+V/pae"/l‘]
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03 st )

E . h .abl ebh, XL
(V“’cv @ g ")
o %l;e'b/"’( % (cox1)-a xie Dz )- WP s(x,u) ]}
= aT- ol y ebhos B
s(x,u) %To aT (%‘th;‘al) X2 + & b3 /xz+vcpu
@1

Simulations were performed for a dynamical PFM controller
CSTR characterized by the following parameters [13):



F = 20001b/r; ¢g=0.50 Ib/lb; V =2400 Ib. ; a = 7.08 x 1010 hr!
;b= 15080 deg R ; To = 5320 deg.R ; L =600 BTUAD. ; cp = 0.75
BTU/Ib.R ; h = 15000 BTU/Mr.R §

For such values of the parameters, the equilibrium point (4.2)
of the system results in : ’

x; =T =600 deg R; u=U(T) =107.679 deg. R; X () =
0.246 1b/ib.

‘The PFM controller parameters were chosenas:a) =8, W=

50, ., Tmlx = 8 %10-4hr, Tmin =2 % 10-4hr , n =15, by 10, 3w

- 40, Figure 2 portrays the time response of the dynamical PFM
controlled state variables x; and x5, the chattering-free (smoothed)
continuous control input trajectory u(t) and the evolution of the
auxiliary output function s(x,u).

5. CONCLUSIONS

A general stabilizing desiﬁn procedure, based on static or
dynamical PFM feedback control policies, has been presented for

minimum phase nonlinear single-input single-output systems. A

stabilizing discontinuous static controller of the PFM type is

proposed for an elementary scalar system. Based on this result, a -

stable PFM controller design is immediately obtained from zeroing

an auxiliary output function - defined in terms of the normal
canonical variables - of any minimum phase nonlinear system, The
obtained static controller generates bang-bang control inputs to the
system thus producing typical chattering state and output responses.
As an alternative to the static controller design, which eliminates this

inconvenience, we have also proposed a dynamical discontinuous

feedback controller of the PWM type. Such a dynamical controller is
also obtained on the basis of zeroing an auxiliary output function,
defined now in terms of the normal canonical variables of the
Generalized Extended system. The static and dynamical results are
based on elementary considerations concerning the asymptotic
stabilization of such a scalar auxiliary output function by means of a
simple PFM fecdback controller of the ON-OFF-ON type. Zeroing
of the auxiliary output function, in both cases, induces an
asymptoticallg stable motion of the constrained dynamics,
characterized by a linear time-invariant system with eigenvalues
placeable -at will. In the dynamical controller case, the
discontinuities, gencrated by the PFM generator, take place in the
state space of the dynamical controller, and not in the state space of
the system. The resulting integrated control actions are, thus,
continuous with substantially reduced ( smoothed out ) chattering.
Aside from the chosen sampling frequency, the chattering reduction
effect on the control input was seen to directly depend on the relative
degree of the given system. This effect being more important for
systems of small relative degree and non-existent for exactly
linearizable systems, .
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FIGURES

Duty Ratio and Duty Cycle functions for PFM
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Figure 2. Dynamical PFM Controlled State Variables,
Chattering-Free Control Input Trajectory and Auxiliary Output
function for CSTR Example.



