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Abstract '

In this article, a differential algebraic approach is presented to deal, in full
generality, with the problem of designing chattering-free, dynamical
multivariable Pulse-Width-Modulation (PWM) feedback control strategies for
the regulation of rigid robotic manipulators.

1. INTRODUCTION

A differential algebraic approach §s presented for the design of multi-
variable Pulse-Width-Modulation (PWM) feedLack control strategies for
nonlinear systems such as rigid robotic manipulators. A major difficulty
associated to PWM controllers lies in the "chattering” responses due to the
bang-bang nature of the involved feedback signals. A dynamical PWM
controller is proposed as a means of effectively circumventing the
discontinuities associated to the PWM control strategies and relate PWM
control to the differential algebraic approach to control theory (see Fliess [3)).
PWM control schemes, for nonlinear systems, were presented in
Sira-Ramirez [1])-[2] (see also the references therein).

Section 2 of this article deals with the differential algebraic approach to the
PWM control of nonlinear multivariable systems. A characterization, through
invertibility, is proposed for multivariable systems which are capable of
sustaining PWM controlled trajectories on the joint zero level set of a number of
independent stabilizing auxiliary output functions. Section 3 presents the
implications of the obtained results in the PWM controller design for a
multivariable rigid-joint manipulator system. Simulation examples are also
presented. The conclusions of this work are collected in Section 4.



2. A DIFFERENTIAL ALGEBRAIC APPROACH TO MULTIVARIABLE PWM
CONTROL IN NONLINEAR SYSTEMS

[3] Let k be a differential ground field and let u be a set of
differential transcendent elements over k. An input-output system consists of:
a) a given set of (independent) inputs : u = (uy,...,up), b) a set of outputs y =
(¥1,-» Ym), belonging to a universal field extension U, such that the
components of y are differentially algebraic over k<u>. Notice that we only deal
with square systems. The field k<y,u> is differentially algebraic over k<u> .

Definition 2.2, [3] Let U be a universal differential field and let k{y,u} denote the
differential ring generated by the components of y and u. A differential
k-specialization is a mapping ¢: k{y,u} -> U which leaves the field k invariant.
The differential transcendence degree of the extension, over k, of the
differential quotient field Q(¢(k{y,u}) is nonnegative and it is never hlgher than
the differential transcendence degree of k<u>/k (i.e., diff tr d* Q(o(k{y,ul)k < diff
tr d* k<u>/k = m). Notice that Q(e(k{y,u}) = k<gy,ou>.Frequently ¢ is the identity
mapping. We only deal with cases in which: diff tr d* k<ey,ou>/k = 0,

Definition 2.3 [3] A closed loop control is a differential k-specialization ¢ : k{y,u)
-> U such that diff tr d°* k<gy, pu>/k = 0. We refer to such feedback loops as pure
feedback loops. In such a case the set of specialized elements guy, ..., pum ,
oY1 s - 9Ym satisfiy a set of ordinary algebraic differential equations.
Whenever diff tr d° k<q>y>/k is smaller than m, the closed loop is said to be
degenerate.

Definition 2.4 An auxiliary stabilizing surface is a differential k-specialization
Y ma;}ping kiy} -> U, such that diff tr d 'k<¢y>/k = 0. The elements ¢ e k<oy>/k
are referred to as average PWM controlled dynamics.

Definition 2.5 Let o be an element of k<y>/k such that o= 0 represents a

desirable average PWM controlled dynamics. A PWM feedback controlled

motion 1is said to exist on o, for the system k<y,u>/k<u>, if there exists a

differential k-specialization ¢ : kly,u} -> U, which represents a pure feedback

}‘oop, l;lr:o‘%n as the average PWM control, ‘such that oe k<gy>/k and diff tr d*
<Py>/K =

Definition 2,6 A square input-output system k<y,u>/k<u> i8 invertible ifuis
differentially algebraic over k<y>, i.e., if diff tr d * k<u,y>/k<y> = 0. (See [3))

Proposition 2.7 A PWM controlled motion exists on an element o € k<y>/k, if
and only if the square system k<y,u>/k<u> is invertible.

Proof (see [4]).

Proposition 2.8 The scalar state s of the following PWM controlled system is
asymptotically stable to zero if and only if pWT < 2
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Proof (see [5)).

Consider now a general multivariable nonlinear system:

1s) =

yi{®i) = ¢;( Y,95 i), u,i,...,ulfi)); i=1,2,..,m ' (2,2)‘

where y(®i) means that the components of the vector y have derivatives which
are smaller than, or equal, to oj. The system (2.2) is assumed to be square and
invertible. Moreover, it will be required that, locally, the matrix: 3c;/9u;(B;) is
non-singular,

Without any loss of generality, it may be assumed that the desired set of
average output dynamics is given by:

yi0i D)« g 3,9, 302)) =0 ; i=12,..m | @8)

i.e., each output component dynamics is only of order aj-1.
Let the set of auxiliary output functions oj be defined as:

o; = 3{0i 1) - g, 3,9, 0@ 2)) ; i=1,2,..m | (24)

then o = 0 (i=1,2,..,m) represent the desirable average dynamics to be imposed,
by means of discontinuous feedback control, on the output components of the
system.

Imposing on each one of the elements oj of (2.3) the dynamics specified by
(2.1) one obtains:

m

0;-2
G = y{®i) - Z 2 _a_(s'%( V.5 aY(%i-2) )ygk*l) = -W; PWM¢[oi]; i=1,2,.,m
=1 k=0 9] @5)

Using now the dynamics (2.2) on the expression (2.5) one obtains an
implicit dynamical PWM feedback controller which asymptotically
accomplishes the desired average dynamics:

m ai'z .
(b5 D), 0,0,B) = Y, 3 2E (g, y(i2) B Wi PWMo)
3=1 k=0 9] (2.6)

i=12,..,m



Invertibility of the original system (2.2) implies that one can solve for each
control input component, from the above set of equations, in the sense of
obtaining a, possibly explicit, coupled set of ordinary differential equations for
the control inputs uj (i=1,2,...,m). »

Let Y be a constant equilibrium value, for the output vector y, of the
autonomous differential system (2.3). It is explicitly assumed that the set of
coupled autonomous differential equations:

¢i( Y,0,...,0, u,u,..,ulBi))=0 ; i=12,..m @n
exhibits an asymptotically stable behavior toward a constant equilibrium vector

given by u = U, This assumption corresponds to a particular definition of a
stable zero dynamics or of a minimum phase multivariable system.

8. AMULTIVARIABLE PWM FEEDBACK CONTROL APPROACH FOR THE
STABILIZATION OF ROBOTIC MANIPULATORS

We consider the following general input-output model of a rigid joint
robotic manipulator, taken from [6, pp. 1-4]:

H(Q¥+Clg 9 q+gl@=u ; y=q 3.1)

where y = q stands for the n-dimensional angular position vector, H(q) is is the
n x n positive definite inertia matrix of the manipulator, the term C(q,q)q is a
n- dimensional vector of centnpetal and Coriolis torques and g(q) is the vector of
gravitational torques. The vector u is the vector of applied torques. ‘

We consider the extended system model of (3.1) (see [6, p. 190] ):

g=0; H@b+CQmo+g@=u ; dsv 32)
where v is an auxiliary independent input. Systems (3.1),(3.2) are trivially
invertible.

The set of input- output differential equations relating the output vector y
to the auxiliary input vector v is easily obtained as:

How® + [HH c<y.y')]y+[0(y.y> +9%;Y—’] y=v (3.9)

We propose the following average decoupled second order asymptotically
stable dynamics on the output vector y, obtained by the given average control:

¥ + 2200y + QR(y-Y) = 0 ; ugy = oy, ))y+g(y)-2H)ZQny -Hy)0R(y-Y) (3.4)

where £ and Q, are diagonal constant matnces appropnately chosen, Then,



according to the results in Section 2, we let the vector of auxiliary output
' functions become:

o= ¥+ 2E0ny + 0A(y-Y) (3.5) ;.

Forcing (3.5) to satisfy a set of decoupled autonomous asymptotically stable
PWM dynamics of the same form as in (2.1) one obtains:

6= y® 42205y + 0F § = W PWMJo(ty)) (3.6

where PWM stands for a vector whose components are constituted by the pwm
functions of the components of the argument and W is a diagonal matrix.

The following dynamic discontinuous feedback controller of the PWM type,
obtained by substitution of (3.3) into (3.6), forces the vector y to satisfy the set of
(decoupled) autonomous dynamics specified by (3.4):

4 = [HyH+ C.y) - 2H) E 0nl 3 + |Cyy) + ?g‘yl)- Hy) 02 |y
- Hy) W PWM¥ + 2 E n y + OA(y-Y))

Simulations were run for a 2 degree of freedom robotic manipulator (see (6,
pp. 1-4 Jwith; 1; =1ly=1[m], m; = mg = 1 [kg)l. The desired position vector

components were set to be:

@.7)

Y; = q14=0.9 [rad]; Yz =qgq=-0.6[rad]

The PWM controller parameters were chosen as :

W (1)(1)]""= gé]’[g] ’3'[ 'y 0?9],9,,= 165 1(.)5]

Figure 1a shows the PWM controlled position and velocity responses of the
robotic manipulator when governed by a dynamiral feedback controller of the
form (3.7). Figure 1b depicts the smoothed components of the applied torque
input vector as generated by the dynamical PWM policy (3.7). Figure lcand 1d
shows the evolution trajectories of the auxiliary output functions along with the
corresponding duty ratios, and the involved pwm signals, for each input
component. The sampling time, for both inputs, was set to 0.1 seconds,

4. CONCLUSIONS

Smoothed PWM control of nonlinear multivariable input-onitput systems,
through a dynamical feedback strategy, constitutes an advantageous, practical,



possibility with theoretical foundations directly found on the differential alge-
braic approach to control theory. Exactly linearizable input-output systems do
not naturally exhibit such a smoothing possibilities. By resorting to a
prolongation of the system, the low pass filtering effects may be robustly
recovered on the associated "extended” PWM controller. »
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Figure 1. Dynamical PWM controlled response
of two-degree-of-freedom robotic manipulator.



