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Abstract A differential algebraic apporach for the sliding mode
control of nonlinear single-input single-output systems is reviewed
in a tutorial fashion. Input-dependent sliding surfaces, possibly
including time derivatives of the input signal, are shown to naturally
arise from elementary differential algebraic results pertaining Fliess'
Generalized Controller Canonical Forms of nonlinear systemns. Tfes
class of switching surfaces generally lead to chattering-free
dynamically synthesized sliding regimes, in which the highest time
derivative of the input signal undergoes all the banﬁ-bang ty}x
discontinuities. A definite relationship among controllability of a
nonlinear system and the possibility of creation of "higher order”
sliding regimes is readily established via differential algebra.
Examples illustrating the obtained results are also included.

1. INTRODUCTION

Sliding mode control of dynamical systems has a long history
of theoretical and practical developments. A rather complete
chronological collection of journal articles and conference
presentations has been gathered by Professor S.V.Emelyanov
(1989), (1990a), who is one of the founding fathers of the
technique. Extensive surveys, with an enormous wealth of
information, have been presented over the years by Utlan (1977),
(1984), (1987). Several books have also been published on the
subject : Emelyanov (1967), Itkis (1976), Biihler (1986), Utkin
(1978),(1992). Contributed volumes by A. Zinober (1990) and
K.K.D.Young (to appear) reveal sliding mode control as an active
discipline of research with enough theoretical maturity. A survey of
the numerous industrial and laboratory applications of sliding
regimes around the world is well beyond the scope of this article. In
the following paragraphs we Erovidc a necessarily incomplete
overview of some of the contributions in sliding mode control for
nonlinear dynamical systems. Many interesting developments in
controller robustness, adaptive regulation, and observer design are
not mentioned.

In recent years, the outstanding developments for nonlinear
control systems based on differential geometric ideas ( see the books
by Isidori, 1989, Nijmeijer and Van der Schaft , 1990) have found
immediate applications, and extensions, to sliding mode control, and
closely related areas, such as high-gain, pulse-width-modulation and
pulse-frequency modulation. Semunal work on sliding regimes for
nonlinear systems is due to Luk'yanov and Utkin (1981). Starting
with the contributions by Slotine and Sastry, (1983) especially
devoted to the field of robotics automation, the differential geometric
approach to nonlinear systems control was exploited and put in
perspective, within the sliding mode control area, by the
independent work of several authors. An important contribution
relating sliding mode systems to high-gain feedback controlled
systems from a geometric standpoint was given by Marino (1985),
Bartolini and Zolezzi (1986) presented interesting developments of
sliding mode control as applicd to robust linearization of nonlinear
plants. A full case study of sliding mode control design for a
nonlinear system was presented by Mathews et al (1986). The
sliding mode control of nonlincar multivariable systems was
addressed by Fernandez and Hedrick (1987). A quite readable
tutorial dealing with multivariable nonlinear systemns was written by
DeCarlo et al (1988). Later, in a serics of articles, Sira-Ramirez
(1987, 1989a, 1989b, 1990) contributed with some formalizations,
application examples and gencralizations, of sliding regimes in
nonlinear systems. More recently, a rather complete picture of the
nonlincar multivariable case has been provided by Kwatny and Kim
(1990).

Extensions to the problem of (quasi) sliding regimes in
discrete time nonlinear systems have also been published in recent
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years. Work in this arca was initiated, within the framework of

sampled data systems, by Miloslavjevic (1985), followed by that of
Opitz (1986). Sarpturk et al (1987) provided new definitions of
shiding regimes for the discrete time case. Zak and Magada (1987)
developed the design ideas from a Lyapunov stability theory
standpoint. Utkin and Drakunov (1989), explored the main
difficulties in this ficld and provided rather general results. The
contribution of Furuta (1990) in this field is related to the linear
case, with emphasis in robustness and self tunning regulation
aspects. Recently, Sira-Ramirez (1991a) treated the general
nonlinear discrete time case using extensions of the nanmal canonical
forms and the relative degree concept. The works of Spurgeon
(1991) and Yu (1992) is centered around the linear systems case.

In the area of distributed sliding regimes for infinite
dimensional systems, the first constributions were given by Breger
et al (1980), Orlov and Utkin (1982) (1987), Utkin (1990) and
more recently by Zolezzi (1989), Sira-Ramfrez (1989%¢),
Si;ag-gargi;ez and Rivero-Mendoza (1990), and Rebiai and Zinober
(1990, 1991).

Recent developments in nonlinear systems include the use of
differential algebra for the formulation, understanding, and
conceptual solution of long standing problems in automatic control.
Developments in this area are fundamentally due to Prof. M. Fliess
(1986,1988, 1989a, 1989b,1989¢,1990a, 1990b). Some other
gioneering contributions were also independently presented by

'ommaret (1983, 1986). Sliding mode control, and discontinuous
feedback control, in general, have also benefited from this new
trend. A seminal confribution in the use of differential algebraic
results to sliding mode control was given by Fliess and Messager
(1990). These results were extended and used in several case studies
by Sira-Ramirez et al (1992), Sira-Ramirez and Lischinsky- Arenas
(1991) and by Sira-Ramirez (1992a-1992d). A most interesting
article extending some of the ideas to multivariable linear systems
and to the regulation of non-minimum phase linear systems is that
of Fliess and Messager (1992). Extensions to
pulse-width-modulation control strategies from this viewpoint were
also contributed by Sira-Ramirez (1991b, 1992¢).

This article is an attempt to present, in a tutorial fashion, some
of the developments in sliding mode control theory from the
differential algebraic viewpoint. It should be pointed out that some
of the results obtained for sliding mode control via the use of
differential algebra are closely related to previous ideas presented by
Emelyanov (¥987, 1990b), from a quite different viewpoint, in his
"binary systems” formulation of control problems. Also, in a
contribution by Bartolini and Pydynowsky (1991) smoothing of the
input signals is achieved through continuous first order estimators.
dA,}ajn. 1n their work, the basic developments are not drawn from

ifferential algebra.

Section 2 of this article is devoted to present some simple
examples which utilize sliding surfaces which not only depend on
the state of the system but also on the system's inputs. These
examples motivate the need for the more general class of sliding
surfaces which directly lead to dynamical sliding mode control.
Section 3 rennts some fundamental results from differential
llgethbra‘an their formal implications in sliding mode controller
synthesis.

2. SOME MOTIVATING EXAMPLES

In this section we provide simple, yet motivating examples
which not only justify the differential algebraic apporach in sliding
mode controller design, but they also point to the need and
advantages associated to more general classes of sliding surfaces,
which include expressions in the input signal and (possibly) some of
its time derivatives.
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Let us begin by a simple example in which the smoothing
properties of dynamical sliding regimes, arising from
input-dependent switching surfaces, are clearly portrayed.

Consider the scalar system:

=y
y=1-X @n

where y represents the state emror with respect to a preassigned
constant reference value X. The variable u is the input signal,
constrained to take values in the discrete set {-U,U}, where U > 0.

It is well known that the following discontinuous feedback
policy, given by :

u =-Usign (y) .2
results in a sliding regime on the line y = 0. This is easily seen from
the fact that the product ods/dt := y dy/dt=-Uly!<0. The
required sliding surface is then represented as:

S={x:0=x-X=0} 2.3)

The ideal sliding dynamics is obtained from the condition
do/dt =0,i.e.,dx/dt=0,and 6=0,ic x = X.

A simulation of the controlled system is shown in figure 1,
with X = 1 and U = 1. The cohtrolled state response, the sliding
surface coordinate response and the discontinuous (bang-bang)
features of the resulting input signal v are separately portrayed in
such a figure.

The effects of the above discontinuous feedback policy are
summarized in two important features: 1) The conditiono =y =0is
reached in finite time ( given by T = U-! | x(0), 2) After reaching of
the desired condition, the same is indefinitely guaranteed to hold. It
may be easily Fmved that this condition can be sustained, in spite of
the presence of bounded perturbations affecting the system behavior
through the input channe] u.

Suppose we would like to trade the finite time reachability of
the zero state error condition by a smoother behavior of the input
variable u while still, possibly, being constrained to utilize auxiliary
input signals (here denoted by v ) taking values in the set (-U, U).
In order to achieve this purpose, let us propose the following
asymptotically stable closed loop behavior of the controlled scalar
state:

x=u=-Ax-X)

If we take now as the sliding surface one representing a
suitable input-dependent switching condition depicting the feedback
input signal error :

(2.4)

S={(xu):0=0+Mx-X)=0} (2.5)
one ideally obtains the required closed loop behavior whenever o =
0. A sliding regime guaranteeing such a condition can be
estabilished by requining now that ode/dt < 0. This may be
accomplished by imposing on o the discontinuous dynamics
specified by do/dt = -Wsign( ¢ ), where W > 0 is an arbitrary
positive real number. Using the new expression for 6, one obtains

W Au = -W sign [u +A(x-X)] 2.6)

which is a differential equation with discontinuous right hand side,
whose solution represents the required control input variable. Itis
easy to see from the above equation (2.6) that the control input
signal u is actually the outcome of a first order low pass filter with
cut-off frequency represented by A. Ideed, using the by now popular
hybrid notation that merges frequency domain quantites with others
in the time domain, one casily obtains:

u:—l—[(ﬂ) sign [u + A(x-X)] =—A.y (o))
s+h A s+

Thus, the input u may be synthesized as the output of a low
pass filter which accepts as an input a discontinuous (bang-bang)
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signal v, of amplitude W/A. By vinﬁe of the amplitude restriéu'on
on the ultimate (auxiliary) input signal v, mentioned above, this ratio
is taken as :

3;_/=u & W=AU 2.8)

The diagram in figure 2 depicts the structure of the dynamical
discontinuous feedback controller explicitly exhibiting the imbedded
low pass filter characteristics which are excited by a bang-bang input
siignal of amplitude U, as initially mﬂ:imd. For a given fixed value
of U, relation (2.8) estabilishes a trade-off between the exponential
rate of approach of the controlled state x to its desired value (
alternatively, the cut-off frequency of the low pass filter , or filter
bandwitdth ) and the design value of the amplitude W, which
indirectly measures the reaching time of the condition ¢ = 0, through
T = W-}{o(0)l . The faster it is desirable to reach ¢ = 0, the faster x
will approach X, but then, the larger the cut-off frequency of the
low pass filter and a larger number of harmonic components of the
bang-bang signal v, and external noise, directly affect the input to
the system.

A simulation of the dynamically discontinously controlled
system (2.1),(2.6) is shown in figure 3 with X =1, W=l and A= 1.
The resulting input signal u is shown to be substantially smoothed
out with respect to its previous behavior when the static
discontinuous contoller was used. Further smoothing of the
controlled scalar state x can be equally inferred from such a figure.

9 i i .
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A rather nfenera] model for nonlinear single-input
single-output nonlinear systems is constituted by the following
n-dimensional analytic system, in Kalman form :

X = f(x,0) .,
y = h(x,u) @9

in which the output y is allowed to explicitly depend on the input
variable u. (such systems may be properly addressed as systems
with relative degree zero ). Suppose 1t is desired to zero out the
output variable y, possibly in finite time, through a discontinuous
feedback control policy. This control task is possible by imposing.
again, the following autonomous dynamics on the scalar output
signal:

y = -W sign(y) (2.10)
and computing the required control signal v. Using (2.9) and (2.10)
one obtains:

[g—:'] f(x,v) + [g%) %ltl = =W sign[h(x,u)] (2.11)

which may be locally rewritten as a first order, time-varying.
ordinary differential equation with discontinuous right hand side :

do- - 3 s Wsignthal ) @12

A block diagram depicting the dynamical discontinuous
feedback control scheme summarized in (2.12) is shown in Figure
4.

The ideal sliding mode behavior obtained on the
inpul-derpcndent manifold y = h(x,u) = 0 is obtained as follows:
Let the feedback law u = @(x) be the (unique) control law satisfying
h(x, ¢(x)) » 0. Then @(x) also plays the rolc of the equivalent control
and it is, evidently, a icular solution of (2.12), for suitable
initial conditions. Indeed, the solutions of (2.12) locally yield dy/dt
= 0, i.e., they yield constant ou:fm responses under ideal sliding
mode conditions. If the initial value of the output is zero, then the
dynamical controller locally induces the condition y = 0 on an open
interval of time. This means, by virtue of the assumed uniqueness,
that the actual (dynamically generated) applied control input u is
taking precisely the same values as o(x).

The ideally controlled dynamics is then obtained as :

X = f(x.9(x))

o
y=0 (2.13)



which, for obvious reasons, is assumed to be locally asymptotically
stable to a desired equilibrium state.

Remark An interesting feature of the above class of problems lies in
the possibilities of robusly impossing ideally designed feedback
control solutions to nonlinear plants. For instance, let u = -k(x) be a
desirable scalar feedback control law for the plant dx/dt = f(x,u).
Then , adopting as an output function the expression: y = h(x,u) =

u + k(x), the dynamical controller obtained from (2.12) imposes, in

finite time, the required feedback control law on the given system.
n
rientation

Consider the nonlinear second order plant representing the
kinecmatic and dynamic equations of single-axis jet-controlled
spacecraft with the attitude variable measured with respect to a
skewed axis and specified in terms of the Cayley-Rodrigues
parametrization (see er and Sira-Ramirez, 1988):

% = 0.5(1+x2)w

ég}“ 2.14)

y=x-X

where x represents the Cayley-Rodrigues orientation parameter,  is
the main axis angular velocity and u is the externally applied input
torque. J is the moment of inertia of the spacecraft around its
principal axes.

It is easy to show that the following nonlincar feedback
control law, ansing from extended linearization considerations,
asymptotically stabilizes the system toward the desired reference
attitude value x = X, with zero final angular velocity o (see also:
Sira-Ramirez and Lischinsky-Arenas, 1990):

u=-2{ lwo + uﬁ[tan"(x)-tan"(X)]} (2.15)

where o, and § are positive design parameters with: 0< {< 1.

Figure 5 depicts the simulated responses of the state variables
x and o as well as the required control input signal u, as computed
from (2.15) with { = 0.707 , 0y = 2 [rad/s], X = 1.5 [rad).

One may alternatively take, as remarked above, an auxiliary
output function y, for system (2.14), which is constituted by the
control input error with respect to the required stablizing feedback
function. 1.e.,

y=u+2] { Lo + o flan(x) - an(X); }

The discontinuous dynamical feedback controller induces a
sliding regime on the input- dependent sliding surface S with
coordinate function ¢ given, evidently, by:

S={(x.uu):c=u+u[§m,,m+ uﬁ(mn"(x)-m“(X))]:O]

A dynamical sliding mode controller, which robustly enforces
the feedback control law (2.15) by zeroing the above
input-dependent (auxiliray) output function y, is given, according to
the previously stated results, by:

0= -2l + Jol 0)- W sign(y) @17
Simulations were carried out for the dynamical sliding mode
controlled system (2.14),(2.17) with sliding surface given by
(2.16). The spacecraft moment of inertia was taken as J = 70
N-mys2. The desired attitude X = 1.5 rad, and the controller design
parameters were taken as : { =0.707, op =2, and W = 40,

Figure 6 depicts the dynamically sliding mode controlled state
variables responses for x and o, the sliding surface coordinate ¢
and the smoothed externally applied input torque u, expressed in
N-mt.

In spite of the slower response of the dynamical sliding mode
controlled system, the applicd input torque is considerably smaller
than the one obtained with the continuous feedback control strategy
represented by (2.15). This fact has a definite bearing on the
stability and performance features of the closed loop system when
amplitude control input torque restrictions are enforced. If, for
instance, one limits the amplitude of the applied input torque to a
reasonable value of, say, 2.5 N-m, the (saturated) continuous
feedback controller (2.15) leads to a stable, but quite degraded.
response for the attitude parameter x, with exceedingly large
overshoot. The dynamical sliding mode controller, on the other
hand, still yields a perfectly asymptotically stable response with
reasonably small overshoot. This is depicted in figure 7.

3. A DIFFERENTIAL ALGEBRAIC APPROACH TO
SLIDING MODE CONTROL OF NONLINEAR
SYSTEMS

In the previous section, some of the advantages of using
input-dependent sliding surfaces were explored through quite simple
illustrative examples. These examples point, essentially, to new
possibilities of sliding mode control when input-dependent
switching surfaces are used. Such possibilities could have also been
arrived at, by using the concept of the extended system (Nijmeijer
and Van der Schaft , 1990) in combination with traditional static
sliding mode controller design. However, input-dependent sliding
surfaces may be seen as natural switching surfaces for nonlinear
systems. This fact is a direct consequence of the differential
algebraic approach, proposed by M. Fliess ( 1986,1988, 1989a,
1989b,1989¢,1990a, 1990b ), for the study of control systems. In
this section we present some simple results of such differential
algebraic approach, as related to sliding mode control. The required
background may be found in Fliess's numerous articles and
outstanding contributions (see references). However, we will try to
be as self-contained as possible. The following developments
closely follow those found in Fliess (1990a).

3.1 Riess's Generalized Co er Canonical Fonr

Definition 3.1 An ordinary differential field K is a commutative
field in which a single operation, denoted by "d/dt" or "-" and called
derivation, is defined, which satisfies the usual rules: d(ab+c)/dt =
(da/dt)b + a(db/dt) + dc/dt for any a,b and ¢ in K. If all elements ¢
in K satisfy dc/dt = 0, then K is said to be a field of constants.

Examples The field R of real numbers, with the operation of time
differentiation d/dt, trivially constitutes a differential field, whichis a
field of constants. The field of rational functions in t with
coefficients in R, denoted by R(1), is a differential field with respect
to time derivation. R(x) is also a differential field for any
differentiable indeterminate x.

Definition 3.2 Given a differential field L which contains K, we say
L is a differential field extension of K, and denote it by L/K, if the
derivation in K is a restriction of that defined in L.

Examples R(t)/R is a differential field extension over the set of real
numbers. The differential field R(t)/Q(1) is also a differential field
extension over the field Q(t) of all rational functions in t with
coefficients in the set of rational numbers Q. Similarly. the field C(1)
of rational functions in t with complex coefficients, is a differential
field extension of, both, R(t) and Q(t). Evidently, C(1)/Q . and

. C()/C are also a differential field extensions.
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In the following developments u is considered as a differential
scalar indeterminate and k stands for an ordinary differential field,
with derivation denoted by d/dt.

Definition 3.3 By k<u>, we denote the differential field generated
by u over the ground field k. i.c., the smallest differential field
containing both k and u. This field is clearly the intersection of all
differential fields which contain the union of k and u.

Example Consider the field of all possible rational expressions in u,

and its time derivatives, with coefficients in R. This differential field
is R<u>. A typical element in R<u> may be:

u® |, 3u% 4 % (d1.02()°
u? YTu® +u

Let x,.....x, be differential indeterminates. Consider the

_50.2 u



differential field k<u>. One may then extend k<u> to a differential
field K containing all possible rational expressions in the variables
Xj...-+Xp » and their time derivatives, with coefficients in k<u>. For
instance, a typical element in K/R<u> now looks like:

i+ M vs
ofxF - E;m—)(z“ﬁ-l:‘—)(u)zxﬁ X2

V; X3X4(X1)® + U —€2 ix,

such a differential field is addressed as a finitely generated field
extension over k<u>. In general, K does not coincide with k<u,x>
and it is somewhat larger.

Definitions 3.4 Any element of a differential ficld extension, say
L/K, only has two possible characterizations. Either it satisfies an
algebraic differential equation with coefficients in K, or it doesn't.
In the first case, the element is said to be differentially algebraic
over K, otherwise it is said to be differentially transcendertal over
K. If the property of being differentially algebraic is shared by all
elements 1n L, then L is said to be a differentially algebraic exension
of K. If, on the contrary, there is, at least one element in L which is
differentially transcendent over K, then L is said to be a
differentially transcendent extension of K.

in the previous example, the differential extension
k<x,u>/k<u> is algebraic.

Example Consider k<u>, if x is an element which satisfies:

x-ax-u=0 forsome ae k

then x is differentially algebraic over k<u>. However, since no
further qualifications have been given, u is differentially
transcendent over k.

niti .5 A differential transcendence basis of L/K is the
largest set of elements in L which do not satisfy any algebraic
differential equation with coefficients in K, i.c., they are not
differentially K-algebraically dependent. A non-differential
transcendence basis of L/K is constituted by the largest set of
elements in L which do not satisfy any algebraic differential equation
with coefficients in K. The number of elements constituting a
differential transcendence basis is called the differential
transcendence degree. The (non-differential )tiranscendence degree
refers to the cardinality of a non-differential transcendence basis.

Example in the previous example, the differential field extension
k<x,u>/k<u> is algebraic over k<u>, but, on the other hand,
k<u>/k is differentially transcendent over k, with u being the
differential transcendence basis. Notice that x is non-differentially
transcendent over k<u> as it does not satisfy any algebraic equation,
but a differential one. Hence, x is a nondifferential transcendence
basis of k<x,u>/k<u>. Evidently the differential transcendence
degree of k<x,u>/k<u> is zero. The non-differential transcendence
degree is just one.

Theorem 3.6 A finitely generated differential extension L/K is
differentially algebraic if, and only if its (non-differential)
transcendence degree is finite.

Definition . 3.7 A dynamics is defined as a finitely generated
differentially algebraic extension K/k«> of the differential field
k.

The input v is regarded as an independent indeterminate.
This means that u is a differentially transcendent element of K/,
i.e., u does not satisfy any algebraic differential equation with
coefficients in k. It is easy to sce, that if u is a differential
transcendent element of k<u> then it is also a differential
transcendence element of K/k<u>.

The following result is quite basic:
- Proposition 3.8 Suppose x = (x}.X3.....Xp) is & nondifferential

transcendence basis of K/kan, then, the derivatives dx;/dt
(i=1.....n) are k<u-algebraically dependent on the components of x.
Proof: immediate.

One of the consequence of all these results, drawn by Fliess
(1990a), is that a more general and natural representation of
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nonlinear systems requires implicit algebraic'di{fcrenﬁa.l equations.
Indeed, from the preceeding proposition, it follows that there exist
exactly n polynomial differential equations with coefficients in k. of
the form:

Pk, X, ulige -, @) =0 i=1, -0 3.1

implicitly describing the controlied dynamics.

It has been shown by Fliess and Hassler (1990) that such
implicit representations are not entirely unusual in physical
examples. The more traditional form of the state equations, known
as normal form is recovered, in a local fashion, under the
assumption that such polynomials locally satisfy the following rank
condition :

9P,

0 O
Xy
rank =n
aP,
o o
g

The time derivatives of the x;'s may then be, locally, solved
for as:
5 =p(xoMu@)=0;i=1;..n 3.2)

It should be pointed out that even if (3.1) is in polynomial
form, it may happen, in general, that (3.2) is not. The representation
(3.2) is now known as the generalized state representation of a
nonlinear dynamics.

The following theorem constitutes a direct application of the
theorem of the differential primitive element which may be found in
Kolchin (1973). This theorem plays a fundamental role in the study
of systems dynamics from the differential algebraic approach
(Fliess, 1990a).

Theorem 3.9 Let K/k<u> be a dynamics. Then, there exists an
element & € K such that K = k<u,g> i.e., such that K is the smallest
field generated by the indeterminates u and & .

Proof see Fliess (1990a).

The (nondifferential) transcendence degree n of K/k<u> is the
smallest integer n such that &(n) is kus-algebraically dependent on
g.desdt,...., d(0-Dgdin-1), We let q; =&, q3 = d&/dt ....qp = -
d(a-Dgsdt(n-1)_ It follows that g =(qy.....q,) also qualifies as a
(non-differential) transcendence basis of K/k«w>. One, hence,
obtains a nonlinear generalization of the controller canonical form,
known as the Global Generalized Controller Canonical Form
(GGCCF) :

£m=h
2920
5 33
g‘%-l =g

ClGn.q.uu,... . u@) =0

where C is a polynomial with coefficients in k. If one can locally
solve for the time derivative of q, in the last equation, one locally
obtains and explicit system of first order differential equations,

known as the Local Generalized Controller Canonical Form
(LGCCF):
dg=q
o=
: (3.4)
%‘In-l =qn
%qn = c(quuii,...u®)



We assume throughout that a2 1. The case a = 0
corresponds to that of exactly linearizable systems under state
coordinate transformations and static state feedback. One may still
obtain the same smoothing effect of the dynamical sliding mode
controllers we derive in this article by considering arbitrary
prolongations of the input space. This is accomplished by
succesively considering the “extended system” ( sce Nijmeijer and
Van der Schaft, 1990 ) of the original one, and proceeding to use the
same differential primitive element yielding the Generalized
Controlier Canonical Form of the original system.

3.2 Dynamical slidi imes based on Fliess's GCCE

The preceeding general results on canonical forms for
nonlinear systems have an immediate consequence in the definition
of sliding surfaces for stabilization and tracking problems in
nonlinear systems.

Consider the following sliding surface coordinate function,
expressed in the generalized phase coordinates q :
G =0q;+...+61qn.14Gn (3.5)
where the scalar coefficients ¢; (i=1,...,n-1) are chosen in such a
manner that the following polynomial, p(s), in the complex variable
s, is Hurwitz:
p(s) = € + S 4+ + Cpuys0-2 4 5071 3.6)
Imposing on the sliding surface coordinate function o the
discontinuous dynamics:

0 =-W sign(6) 3.7
then, the trajectories of o are seen to exhibit, in finite ime T given
by T = W-1| o(0) |, a sliding regime on o = 0. Substituting on
(3.7) the expression (3.5) for ¢, and using (3.4), onc obtains, after

some straightforward algebraic manipulations, the following
dynamical implicit sliding mode controller :

c(q,u.ﬁ‘. o u(ﬂ)) =
€111 +(C260.1-€1)q2+ « -+ +(Cp.2Cz.1 €0.3)0-2#+(C0.1€0.1-C0-2)Gn-1
-W sign{ciqy +...Cp.1G0.1+qa)
(3.8)

Evidently, under ideal sliding conditions o = 0, the vaniable
qq no longer qualifies as a state variable for the system since it is
expressible as a linear combination of the remanining states and,
hence, q;, is no longer a non-differentially transcendental element of
the field extension K. The ideal (autonomous) closed loop dynamics
may then be expressed in terms of a reduced non-differential
transcendence basis K/k which only includes the remaining n-1
phase coordinates associated to the ox:final differential primitive
element. This leads to the following idea! sliding dynamics:

£91=‘h

§%=%
. 3.9
g%l =C1qy --ec Cs-1G0-1

The characteristic polynomial of (3.9) is evidently given by
(3.6) and. hence, the (reduced) autonomous closed loop dynamics is
asymptotically stable to zero. Notice that by virtue of (3.5), the
condition ¢ = 0, and the asymptotic stability of (3.9), that g, also
tends in an asymptotically stable fashion to zero.

The equivalent control , denoted by ugy is a yirtual feedback
control action achieving ideally smooth evolution of the system on
the constraining sliding surface o = 0, provided initial conditions are
precisely set on such a switching surface. The equivalent control is
formally obtained from the condition do/dt = 0. i.e.:

c(qieq.bag.++ - UfR) = )
€165.191+(€264.1-€1)q2+ + -+ +(Ca.2C0.1 Ca-3)qu-2+(C01C01-C0.2 )1
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Since q asymptotically converges to zero, the solutions of the
above time-varying implicit differential equation, describing the
evolution of the equivalent control, asymptotically approach the
solutions of the following autonomous implicit differential equation :

cOpp...,u@)=0 (3.11)

Equation (3.11) constitutes the zero dynamics (See Fliess.
1990b) associated to the problem of zeroing the differential primitive
element, considered now as an (auxiliary) output of the system.
Notice that (3.10) may also be regarded as the zero dynamics
associated with zeroing of the sliding surface coordinate function .
If (3.11) locally asymptotically approaches a constant equilibrium
point u = U, then the system is said to be locally minimum phase
around such an equilibrium point, otherwise the system is said to be
non-minimum phase. The equivalent control is, thus, locally
asymptotically stable to U, whenever the underlying input-output
system is mimmum phase.

One may be tempted to postulate, for the sake of physical
realizability of the sliding mode controller, that a sliding surface ¢ is
properly defined whenever the associated zero dynamics is
constituted by an asymptotically stable motion towards equilibrium.
In other words, that the input-sliding surface system is minimum
phase. It should be pointed out, however, that non-minimum phase
systems might make 'perfect physical sense and that, in some
instances, instability of a certain state variable, or input, does not
necessarily means desastrous effects on the controlled system. The
following example illustrates this fact.

Example 3.10Q (control of a non-minimum phase system).

Consider the problem of maneuvering a motor-driven
unicycle which advances with constant (ground) speed V on a plane
equipped with cartesian coordinates, given by the ordered pairs
(x.y), describing the gosition of the contact point. The control input
is represented by the heading angle u, measured with respect to the x
axis. The objective is to maneuver the unicycle to follow a circle of
radius R, drawn on the plane, and centered at the origin O of
coordinates (see figure 8). For simplicity, we assume that u takes
values in the interval (-eo, 7/2) and, hence, only counter- clockwise
solutions are considered.

It is easy to see that the the motions may be described by the
following set of analytic differential equations :

x = Vcos(u)

3.12
y = Vsin(u) S )
or, in polar coordinates p,¢ by :
p= Vi -
p = Veos(u-9) 3.13)

o= %— sin(u-e)

In spite of the analyticity of the expressions in the differential
equations, the system may be reduced, by straightforward
elimination, to an algebraic implicit differential equation:

2
b - g[w-mﬂ} v =0 @ag

The condition:
{(p)2zV2

must be enforced, so that the radial position coordinate does not
become uncontrollable. The uncontrollable motions correspond with
uniformly sustained purely radial motions from (or towards) the
origin of coordinates. Moreover, notice that, unless u is allowed to
become constant (i.e., unless du/dt = 0), the implicit differential
equation (3.14) does not have any real solutions if the following
strict inequality :

) <v? (3.15)

is violated.

Remark The phenomenon of obtaining implicit differential equations
and inequalities as the input-output description of a system, arising
from a state elimination procedure, has been demonstrated to hold in
full generality by Diop (1989). [ ]



We consider the following position emror: { = p-R, with
respect to the circle line.

The control task consists in stabilizing the value of § to zero
and, thus, obtain a perfectly circular motion of radius R for the
unicycle. Notice that under perfect tracking of the circle, dp/dt=0
and the inequality (3.15) is always satisfied.

It is easy to see-that q; = {=p - R qualifies as a differential
primitive element. The GCCF for the system is, evidently, given by

AR , (3.16)
o . —L _[v2. A1 (g ve. 2] o
& - igV(e)]) V()] =0

The sliding surface candidate o is constituted, in this case, by
an appropriate stabilizing linear combiatinon of the generalized state
components :

e =q+aq; ;>0 (3.17)

Notice that in original coordinates, ¢ is an input dependent

switching surface.

Under ideal sliding conditions ¢ = 0, the unicycle
asymptotically approaches the circle of radius R. The dynamical
sliding mode controller is obtained by imposing the discontinuous
dynamics (3.7) on 6. Such dynamical discontinuous controller is,

implicitely, given, in terms of the transforined coordinates q, q;.
by:

2
1 2
RV (e

(8){ V()] =0
The zero dynamics associated to the stabilized (closed loop)

system is immediately obtained, according to (3.11), from (3.16)
by lettingq;, q; and dqy/dt be zero:

{ €1q2 + Wsign(qa+ ¢1qy) -

(3.18)

P =IY{§- (.19)

The imposed restrictions on the heading angle u dictate that
the physically meaningful solution to the zero dynamics implicit
equation is given by: du/dt = -V/R, which is, evidently, unstable.

Remark The physical meaning of such an unstable zero dynamics is
quite clear: in order to mantain the motion of the unicycle on the

G TR | S— =1 _|v2. 2 i
u m—(qz—)’[c‘qz*ql +R[V (g2)2hW SIEH(Q2+CIQ1)]
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or, by carefully taking into account the right angular relation, in
original polar coordinates, as :

{clcos(u-o) + pl tinz(u-o)% sign [Voos(u—o»cx(P-R)]}

0= -
sin(u-@

Simulations of the dynamically sliding mode controlled

_ unicycle were performed with the following parameters: V = Sm/s ,

prescribed circle, one must turn the heading of the unicycle at a fixed -

rate, which precisely coincides with the constant angular velocity
-V/R of the contact point moving, counter-clockwise along the
circle, with fixed tangential velocity V. The fact that the heading
angle is constantly decreasing, without bound, can hardly be
considered to represent a physically harmful behavior for the system
or for the associated control task. ]

An explicit representation of the system, which is necessarily
local, may be obtained by solving with respect to dq,/dt from the
second equation in (3.16):

G1=q2
LG q|+n["2-(qz)’] £(§WVE- (g3 )2

3.20)

It is easy to see, from equilibrium considerations, that the two
possible solutions for dq,/dt represent the possibility of clockwise
and counter-clockwise motions along the circle, in inverse
correspondence with the sign adopted for the (unstable) zero
dynamics above. We take the positive sign as the solution for dg,/dt
in (3.20), since we have explicitly assumed that only
counter-clockwise motions are allowed.

The explicit dynamical sliding mode controller is then readily
obtained as: :
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R=5m,W =10, c; = 2 s"1.The results are shown in figure 9.

The smooth trajectory on the plane is portrayed showing
asymptotic approach to the target circle. The sliding surface
coordinate evolution is also shown in that figure and it is easily seen
to comply with the impossed discontinuous dynamics. The angular
position of the contact point of the unicycle on the plane exhibits an
(unstable) ever decreasing behavior as pointed out above. The
heading angle response, acting as an external control input, is also
shown to cme without bound, asymptotically to a linear growth, as
demanded by the nature of the equivalent control dynamics and its
limiting behavior represented by the zero dynamics.

Differential Algebraic Approach
Consider a (nonlinear) dynamics K/k<u>. Let, furthermore, §

= (§).....{n) be a non-differential transcendence baisis forK,i.e.,
the transcendence degree of K/k<u> is, then, assumed to be n.

Definition 3.11 A sliding surface candidate is any element ¢ of

K/k<u> such that its time derivative do/dt is k<u>-algebraically

dependent on {. That is, there exists a polynomial § over k such that
S$@. 8, u, 0. . w)=0 (3.23)

A more traditional definition of sliding surface coordinate
function is related to the fact that no input signals, nor any of its time
derivatives, were customarily allowed to be part of the expression
defining a sliding surface candidate. In this unnecessarily restricted
sense, the sliding surface candidates were only allowed to be an
(algebraic) function of the state components. One recovers this
definition, and its inherent limitations, using differential algebra.

Proposition 3.12 The element o in K/k<u> is a sliding surface
candidate if it is k-algebraically dependent on gll the elements of a
transoendence basis §.

Proof the time derivative of ¢ is k-algebraically dependent on the
derivatives of every element in the transcendence basis 4. Therefore,
do/dt is k<u>-algebraically dependent on §,

The condition in the proposition is clearly not necessary as ¢
may well be k-algebraically dependent only on some elements of the
transcendence basis §, and still have do/dt being k<u>-algebraically
dependenton §,

Remark in the traditional definition of sliding surface candidate for
sﬁstcms in "Kalman form" with state &, the time derivative of the
sliding surface was only required to be algebraically dependent on &.
Hence, all the resulting sliding mode controllers were necessarily
static. The differential algebraic approach naturally points to the
possibilities of dynamical sliding mode controllers, specially in
nonlinear systems where elimination of input derivatives may not be
possible at all (see Flicss er al 1991, for a physical example of this
nature). : [

Imposing on ¢ a discontinuous sliding dynamics of the form:
6=-Wsign (o) (329

one obtains, from (3.23), an implicit dynamical sliding mode
controller given by :
S(-Wsign(@), &, u, d,... @) =0 (3.25)

which is to be viewed as an implicit, time-varying, discontinous



ondinary differential equation for the control input u.

The two "structures” associated to the underlying variable
structure control system are represented by the pair of implicit
dynamical controllers:

S(-W. & u, 0. u)=0; for 0>0
SW,E u,0....ua)=0; for 6<0

(3.26)

each one valid, respectively, on one of the "regions” : ¢> 0O and 6 <
0. Precisely on the condition o= 0 neither one of the control
structures is valid. One then, ideally, characterizes the motions by
formally assuming ¢ = 0 and do/dt = 0in (3.23).

We formally define the equivalent control dynamics as the
dynamical state feedback control law obtained by letting do/dt
become zero in (3.23), and considering the resulting implicit
differential equation for u :

S(0, &, ugg. ipg.... ug) =0 (3.27)
Equation (3.23) is implicit with respect to 6. Whenever
9S/d(do/dt) # 0, then one locally obtains:

6=s(E. v, 0,...,0@) (3.28)
and the corresponding dynamic sliding mode controller, complying
with (3.24), is given by:

s(& u, u,...,u%) =-Wsign () (3.29)

If, furthermore, ds/0u(®) is non zero, one locally obtains a
time-varying state sgace representation for the dynamical sliding
mode controller (3.29), of the form:

Uy =uy

Uz = U3 (3.30)

U = 8(0;.-- - Uy E, Wsign(0) )
u=uy

All discontinuities arising from the bang-bang control policy
are seen to be confined to the highest derivative of the controri(;lput
through the nonlinear function 6. The output u of the dynamucal
controller is clearly the outcome of a integrations performed on
such discontinuous time derivative and, for this reason, u is
sufficiently smoothed.

4. ternative definition of the equivalent ol d ics

One may generate a differential algebraic extension of k<u>
by adjoininﬁ o to it and consider k<u,0>. The differential field
extension k<u,6>/k<u> is an input-output system, or, more
properly, an input-sliding surface system. The element o is then a
non-differential transcendence clement of k<u,o> over k<u> and it,
thus, satisfies an algebraic differential equation with coefficients in
k<u>. This means that there exists a polynomial with coefficients in
k such that:

P(G.6,...,06"uu,.. 00 =0

where we have implicidy assumed that p is the smallest integer such
that dPgydt P is dependent on o, do/dt,..., u, du/dt,...

(3.31)

This, useful, characterization of sliding surface coordinate
functions has not been clearly established in the sliding mode control
literature. Obtaining a differential equation for the sliding surface
coordinate o, which is indpendent of the system state, has direct
implications in the area of "higher order” sliding motions ( see
Chang, 1991, for a second order sliding motion example) and some
recent developments in “binary control systems” (Emelyanov,
1990b). We explore these relations in section 3.5, below.

A state-independent, implicit, definition of the "equivalent
control dynamics” can then be immediately obtained from (3.31) by
setting o, and its time derivatives, to zero and, hence, obtain:
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P(0.0.....0,uj,...,u") =0 332

In the language of differential algebra we may relate the -
definition of the equivalent control dynamics with that of a
differential specialization. This allows to formally define the above
procedure.

Indeed, using closely related ideas, appearing in Fliess
(1990b), associated to the zero dynamics of smoothly controlled
systems, the equivalent control dynamics, corresponding to the
sliding surface candidate o, may be obtained as follows: Take the
input-sliding surface system k<u,o>/k<u>. Find the largest
differential subfield J of k<u,0> which contains k<o> and such that
the extension J/k<o> is differentially algebraic. Give now the value
of zero o o and extend the corresponding differential specialization
to J, and obtain a differential ficld Jeq. Then, the extension Jeq/k
constitutes the equivalent control dynamics. This extension is,
evidenty, differentially algebraic.

The above procedure amounts to elimjpation of the
transcendence basis & adopted as a state of the given system, and
obtaining an (implicit) differential algebraic expression relating u,
and its time derivatives, to o and a finite number of its time
derivatives (see Diop, 1989). On the resulting differential equation,
we would then set o to be (ideally) zero. The obtained autonomous
differential equation for u is the equivalent conitrol dynamics. This
definition of the equivalent control dyamics has the advantage of
being state-free and, therefore, independent of the particular
representation of the system.

3.5 Higher arder slidi .

In recent times some efforts have been devoted to smoothing
of sliding regimes through the so called "higher order” sliding
regimes. The ideas behind "binary control systems” as applied to
variable structure control are also geard towards obtaining
asymptotic convergence towards the sliding surface, in a manner
that avoids control input chattering through integration. These two
develpments are also closely related to the differential algebraic
approach. In the following paragraphs we explain how the same
ideas may be formally derived from differential algebra, in all
generality.

Consider (3.31), with g as an output. We may rewrite such
an implicit dynamics as the following Global Generalized
Observability Canonical Form (GGOCF) (see Fliess, 1988):

d] =0

0:2 =03 (3.33)
P(61. -+, Op. Gp. WA, -+, uM) =0

6=0)

As before, an explicit LGOCF can be obtained for the element
o whenever dP/d(dop/d)= 0 :

=0

=0 334)

Gp = (o1, -+, Op, W, o+, uM)
¢=0;

Definition 3,13 An element ¢ of the dynamics K/k<u> admits a p~h
order sliding regime if the GOCF (3.34), associated to g, is p-th
order.

One defines a p-th order sliding surface candidate as any
arbitrary (algebraic) function of ¢ and its ime derivatives, up to
p-1-st order. For obvious reasons, the most convenient type of
function is represented by a stabilizing lincar combination of ¢ and
its ime derivatives.

§ =m0 + M02+ -+ ++Mp.10p. 1+ Op (3.35)

A first-order sliding motion is then imposed on such a linear
combination of generalized phase variables by means of the
discontinuous sliding mode dynamics:

s=-Msign(s) ; M>0 (3.36)



This results in the implicit dynamical higher order sliding
mode controller:

poL, .y Gp ;- U =
mMg.101+ (MM -m) )02+ - o
+(mp_aMp.y ~Mp.3)0p.2+(Mp. 1M 1-Mp.2)0p 1

. 3.37
-M sign{m,61+...my.0p1+0p) @31
As previously discussed, s goes to zero in finite time and,
provided_thc coefficients in (3.35) are properly chosen, an ideally
asymptotically stable motion can be then obtained for ¢, as govemed
by the following autonomous linear dynamics:

t’l] =02
82=03 (3.38)
Gp1= - Mmo) - myo;
=0

Example in example 3.10, the first order sliding regime obtained for
o is actually a second order sliding regime for the radial position
error: q = § = p - R. As it is easily seen from (3.13), such an ermror
quantity does qualify as a sliding surface candidate and, hence, a
non-smoothed first order sliding regime could have also been
created on it.

""" Mp.1%p-1

Example_( continuously stirred tank biological reactor )

The following differential equations describe a simplified
model of methanol growth in a continuously stirred tank biological
reactor which utilizesmerhylomonas organisms (see Hoo and
Kantor, 1986, and Sira-Ramirez, 1992e). Let x; represent the
density of methylomonas cells and let x; represent the methanol
concentration :

X1 = AyO(x))x; - vX;

%22 - Ahx) %1 + u(Ar- %) (2
y=x
where
=X
o) =g = (3.40)

The control input u represents the dilution rate of the substrate
and Ag is the feed substrate concentration, assumed to be constant.

Ay and Ag are known constanis.

For constant values u = U, of the dilution rate, the system
exhibits two constant equilibrium points. One of the equilibrium
points is located at (0, Af), which is of no physical interest, and the

second one is given by :

XIM=M%B)EA“ ;Xz(U)='A%Uﬁ‘ 341

The equilibrium value U, for the dilution rate, must
necessarily satisfy the following relation:

Ay
U< arB)

in order to have physically meaningfu! (i.c., positive and finite )
equilibrium values for x; and x,.

Suppose it is desired to regulate the methanol concentration x;
1o its equilibrium point X5(U) for a given U.

The methanol concentration error, ¢ = X - Xp(U), evidently
3\mliﬁes as a sliding surface candidate, since its ime derivative is
ependent on the control input u. The resulting static "first order”
sliding mode controller does not seem to have much practical sense,
since a discontinuous dilution rate v, i.c., onc including arbitrarily
larhgie frequency switchings, is difficult, if not impossible, to
achieve:

oL Ao Wsisn
LT [Acp(x) - W sign (x- X2(U))]  (3.42)

A simulation of the static sliding mode controlled biological

" tank reactor is shown in figure 10. The system. and design,
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parameter values used for the simulation were chosen as :

Ar=18, A, =0504 , Ag=132 B =849 104
U=04, X2(U)=33x10° , W=10
The state trajectory response for x; is sufficiently smooth and
it is seen to slowly converge to its equilibrium value X,(U) =
0.6849, while the trajectory of x, exhibits significant chattering
around its preassigned equilibrium point. The feedback control input

also exhibits a chattering response, thus making the feasibility of the
controller quite questionable from practical grounds.

The concentration error ¢ is seen to satisfy a second order
algebraic differential equation of the form:

& = - AJP(O+X3(U)) 6 + Qo+XaUNAKE+Xa(U)) - u]

Ar-0-XoU) o), seal. g
kwm 6+ (Ar- 6-Xa(U)) -ué (3.43)

where ¢'(.) stands for d@(.)/d().

The LGOCF. which in this case is also a GGOCF,
associated 1o the concentration error o is then given by:

61=0
82 = AdR(@1+X2(L)) 01 + 901+ Xo(U)){ Ap(01+X2(L)) - u)]
(U(Ar -01-Xo(U)) . '

AR(E1+Xa(L) T
+1 (Ar- 01-Xa(U)) -u 02
o =0

(3.44)

A second order sliding regime may now be created for o
using the sliding surface:

5= 024 m0] (3.45)

Notice that, expressed in terms of the state variables, such a
sliding surface is actually an input -dependent switching function.
Indeed, one obtains the following altemative expression for s:

8 =- Ag(xa) X + U(Ar- 1)+ my (x2 -Xa(U))  (3.46)

Imposing the discontinuous dynamics ds/dt = -M sign(s), on
the second order sliding surface candidate s, yields the following
dynamical sliding mode controller:

u(Ag- 01-Xa(U)) =

- AJ(E19 X, (V) 024 (@1 X2 (U AQO1+X2(L)) - u)
u(Ar-01-Xy(U)) o ’

Agp(a1+X;(U))

+{u-my )a2 -Msign (02 +my 01)

(3.47)

which expressed now in terms of the state variables of the system
reads :

K.

yven [ ~AD(x) X1+ U (Af'xz)](Ao‘D'(Xz)hW-ml)

(3.48)
+ Agp(x2)x1(A(x2) - u)

-M sign[-AoQ(Xz)X) + u(Ar-x2) + m(x:- X;(U))]}

The dynamical controller (3.48) exhibits a singularity
(impasse point ) at xy = Ag. The desired value X5(U) must then be
chosen far away from Ay. If, however, trajectories must necessarily
cross through this singularity, then suitable discontinuities must be
appropriately devised on the control input prescription (see Abu el
Ata-Doss et al , 1992 for details).



The simulations shown in figure 11 depict the higher order
sliding mode controlled state responses x; and x; converging
towards their equilibrium points, the smoothed nature of the dilution
rate u, acting now as a dynamically gencrated feedback input, and,
finally, the asymptotic convergence of the concentration error o, to
zero.

26 Slidi o lable nonli

The differentially algebraic closure of the ground field k in the

dynamics K is defined as the differential field x, where K 2 x 2 k,
consisting of the elements of K which are differentially algebraic
overk

if.x=k

The following definition is taken from Fliess (1991) (see also
Pommaret, 1988):

Definition 3.14 The dynamics K/k<u> is said to be controllable if,
:{nd only if, the groud field k is differentially algebraically closed in

Controllability implies, then, that all elements of K are
necessarily influenced by the input u, since they satisfy a
differential equation which is not independent of u and of, possibly,
some of its time derivatives.

A higher order sliding regime can be created for
any element o of the dynamics K/A<u> if, and only if, K/A<u> is
controllable.

Proof sufficiency is obvious from the fact that ¢ satisfies a
differential equation with coefficients in k<u>. For the necessity of
the condition, suppose, contrary to what is asserted, that K/k<u>is
not controllable and yet a higher order sliding regime can be created
on any element of the differential ficld extension K/&<u>. Since k is
not differentially algebraically closed, then, there are elements in K,
which belong to a differential field x containing k. which satisfy
differential equations with coefficients in k. Clearly, these elements
are not related to the control input u through differential equations. It
follows that a higher order sliding regime cannot be created on such
elements. A contradiction is established.

consider the unicycle example, which is easily seen to be
controllable. The radial error coordinate p-R qualifies as a sliding
surface candidate since its first time derivative is already
(analytically) dependent on u and , hence, a first order sliding
motion can be created on it. This very same element exhibits a
second order GOCF and, consequently, a second order sliding
motion can also be created on such a sliding surface candidate.

In the single-axis satellite example, the system is clearly
controllable. Notice, however, that the attitude error is not a sliding
surface candidate and, therefore, a first order sliding motion can not
be created on it. However, a second order (although static) sliding

. regime clearly exists for this element.

In this more relaxed notion of a higher order sliding regime,
one may say that a sliding regime can be created on any element of
the dynamics of the system, if, and only if, the system is
controllable. This characterization of sliding mode existence
through controlability is belicved to be new, and a direct
consequence of the differential algebraic approach.

4. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

The differential algebraic approach to system dynamics
provides, both, theoretical, and practical grounds, for the
development of sliding mode control of nonlincar dynamical
systems. More general classes of sliding surfaces, which include the
presence of inputs and, possibly, their ime derivatives, were shown
to naturally allow for chattering-free sliding mode controllers of
dynamical nature. Although equivalent smoothing effects can be
similarly obtained by simply resorting to appropriate systems
extensions, or prolongations of the input space, the theoretical
simplicity, and conceptual advantages, stemming from the
differential algebraic approach, bestow new ssibﬁiﬁes to the
broader area of discontinous feedback control. For instance, the
same smoothing effects, and theoretical richness, can be used for the
apropriate formulation and the attack of many potential application

¢ field k is differentially algebraically closed if, and only

arcas based on pulse-width-modulated control strategies (see
Sira-Ramirez, 1992¢). The less explored pulse-frequency-modulated
control techniques have also been shown to benefit from this new
approach ( Sira-Ramirez, 1992f).

Discontinuous feedback controller design will undoubtedly be
enriched by the differential algebraic approach. For instance, it has
been shown, in a most elegant manner, by Fliess and Messager
(1991), that non-minimum phase linear systems can be
asymptotically stabilized using dynamical precompensators and
sliding mode controliers. Such results could be extended to the
nonlinear systems case with, possibly, some significant additional
efforts. This topic, as well as possible extensions of the theory to
nonlinear multivariable systems and 1o infinite dimensional systems, .
deserve some attention in the forseeable future.
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Figure 1. Simulation of (statically) sliding mode controlled
responses of single integrator plant.
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Figure 2. Filtering Effect of Dynamical Sliding Mode Control of a
Single Integrator Plant.
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Figure 3. Simulation of dynamically sliding mode controlled
responses of single integrator plant.
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Figure 4. Dynamical sliding mode control scheme for zeroing of
input-dependent outputs.
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Figure 5. State vaniables responses and arplied input torque for
continuous feedback controlled single-axis spacacrait.
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Figure 6. State variables responses, sliding surface coordinate
evolution and applied input torque for dynamically sliding- mode

controlled spacacraft
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Figure 7. Continuous and dynamical sliding mode feedback
controlled responses of attitude parameter subject to saturation of
control input torque (torque saturation limits:l u 1< 2.5 N-m).



Figure 8. Geometry of the unicycle control problem of following a
prescribed circular trajectory with constant velocity.
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Figure 9. Simulations of dynamically sliding mode controlled
unicycle.
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Figure 10. First order sliding mode controlled continuously stirred
tank biological reactor.
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Figure 11. Second order sliding mode controlled continuously
stirred tank biological reactor.



