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Abstract

In this article a unified approach is proposed for the design of
dynamical discontinuous feedback controllers leading to the
chattering-free stabilization of nonlinear single input single output

systems. The adopted framework is that of a Generahzed State *

representation form of the given nonlinear plant, and use of the

associated Generalized Observability Canonical Form of such.

representation. Unification of discontinuous feedback policies is
achieved by meas of the finite time nulling of a suitably specified

" auxiliary input-dependent output function via simple discontinuous
feedback control digms of various kinds. The zeroing of such
scalar stabilizing function induces asymptotically stable controlled
dynamics on the given nonlincar minimum-phase plant. Pulse-
Frequency-Modulation, Pulse-Width-Modulation and Sampled
Sliding Mode Control strategies are considered from this unified
viewpoint. Examples are provided including simulations.

1. INTRODUCTION

Recently, results from the differential algebraic approach to
control theory, pioneered by Prof. Michel Fliess (1989,1990a),
have greatly improved the applicability of discontinuous feedback
strategies, specially those of the sliding mode (SM) type, leading to
asymptotic stabilization, and tracking, in nonlinear systems (sce
Sira-Ramirez, 1993 and Sira-Ramirezer al, 1992) for application
examples in mechanical and electro-mechanical systems). Some of
the traditional disadvantages of sliding mode control policies are
fundamentally related to the chattering of input and state variables
response signals (See Utkin, 1978). %‘hcsc difficulties are easily
circumvented via dynamical sliding mode controllers while retaining
the outstanding robustness, and simplicity inherent to this class of
feedback control schemes.

In this article, Fliess's Generalized Observability Canonical
Form (GOCF) is shown to naturally allow for dynamical feedback
controller design based on pulse-frequency-modulation (PFM)
strategies, pulse-width-modulation (PWM) policies and sampled
sliding modes (SSM). The obtained control input signals are
substantially smoothed with respect to their corresponding static
alternative and, hence, chattering-free discontinuously controlled
responses are generated. The obtained PWM and PFM controller
designs do not resort to traditional approximation schemes, based
on (infinte frequency) average models, of the discontinuously
controlled systems (see, Sira-Ramirez, 1989). The smoothing
features of dynamical discontinuous feedback policies are
particularly important in the regulation of mechanical and chemical
systems, in which large and fast input vibrations, or jump
discontinuities, cannot be simply allowed on the actuators, while a
need still exists for certain degree of robustness (i.c., insensitivity to
modeling errors and extemal perturbations) and quality performance
of the proposed regulation scheme.

The synthesis of the several dynamical discontinuous
regulators, here proposed, is based on Fliess's Generalized
Observability Canonical Form (GOCF) for nonlinear single -nput
single-output systems (See Fliess, 1989). In Section 2 of this
article, we briefly address the dynamical SM control solution to the
output stabilization problem and present the basic results of the PFM
the PWM and the SSM controller design schemes. In section 3, we
present some illustrative examples along with encouraging
simulations. The first example deals with the classical robotic
manipulator system, for which torque input chattering is effectively
eliminated, in spite of the underlying discontinuous feedback control
policy. The second example arises from a non-traditional application
area for discontinuous feedback control, such as chemical process
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control. In this example, a discontinuous feedback control regulator
is designed for the stabilization of the output concentration of a
certain chemical agent, in a double effect evaporator system. In both
examples simulations are provided which depict the advantageous
features of dynamical discontinuous controls. Concluding remarks
are collected at the end of the article.

2. DYNAMICAL DISCONTINUOUS FEEDBACK
CONTROL OF NONLINEAR SYSTEMS

The results of this section may be extended to tracking
problems (see Sira-Ramfrez, 1993, Sira-Ramirezer a, 1992 ) and 1o
multivariable nonlinear systems.

2.1 Fliess's Generalized Observability Canonical Form.

It has been shown in Fliess 1989 (see also Conte et al , 1988 )
that a nonlinear, single-input single-output n- dimensional system
given in generalized state representation form:

% = fx.u. 4, ... ub)

y = h(x.u. & ... u®) @n

can be locally transformed, via an input-dependent state coordinate
transformation of the form :

2=®(x.u,0,...,ule-1) (2.2)
into a system of the form:

=1

B=1

2.3)

3, = c(z,u4,... ul®)

y=4
provided the following “observability” matrix of the system (2.1) is

full rank:
ax

M D(x,u, - b))
ox

(2.4)

™ Dix,u,8,...,u®D)
ax

- -

In (2.3), o is assumed to be a strictly positive integer. The
results, however, can be easily extended to systems exactly
linearizable by static state feedback, i.e., for systems in which a= 0
(see Sira-Ramirez 1992, and the first example presented in Section

3).
It must be remarked, however, that, in general, (2.3) is not,
necessarily, n-dimensional.

The input-dependent state coordinate transformation (2.2) is
given by the following local diffeornorphism:
h(x,ug, - -u®)

hO(x,u 0, - - uB+1)

z=®(x.uu,... @)= 2.5)

h(-Dx u,0,...,00 1)



.

Suppose u = U, x = X(U) describe a constant equilibrium
point for the original system (2.1), such that h(X(U),U, 0.....0 ) is
zero, then z = 0 is an equilibrium point of (2.3). The autonomous
dynamics described by:

c(Ou,... u®) =0

is known as the zero dynamics (see Fliess, 1990b). The stability
nature of any constant equilibium point u = U of (2.6) determines
the minimum or non-minimum phase character of the system about
the corresponding equilibrium point. We denote such constant
equilibrium point for system (2.1) as (X(U),U,0).

(2.6)

2.2 A GOCF Approach to Dynamical Discontinuous
Feedback Controller Design for Nonlinear Systems.

Consider the following auxiliary output function ¢ : R® -> R,
defined in terms of the transformed variables 2,

% o

izl

&2)= ( (e X))

such that the following corresponding polynomial in the complex
variable A is Hurwitz:

6l
z .Y'Al-l +0)

iz}

(2.8)

Suppose the system is locally minimum phase around
(X(U)U,0). It is easy to see that if (2.7) is forcefully constrained to
zero (whether in finite time, or in an asymptotically stable fashion)
by means of appropriate contro} actions (possibly of discontinuous
nature), the resulting controlled dynamics locally evolves in
accordance with:

y=2;

3=y

n-1
251 = 'Z Yz

i=1

y=z,

which is asymptotically stable to zero.

Two of the dynamical discontinuous feedback controller

design schemes, here proposed, rely on inducing an asymptotically
stable linear time invariant controlled dynamics such as (2.9). with
eigenvalues placeable at will. This is done by driving the proposed
auxiliary output function o(z) to zero. SM controllers can always
accomplish such a task in finite time, PFM and PWM controllers, on
the other hand, can only accomplish this task in an asymptotially
stable fashion, while SSM control can only do it approximately.

Dynamical Sliding Mode Control of Nonlinear §

Proposition 2.1 Let W be a strictly positive quantity and let "sgn”
stand for the signum function. The one dimensional discontinuous
system :

6=-Wsgno 2.10)
globally exhibits a sliding regime on ¢ = 0. Furthermore, any
trajectory starting on the value 6 = 6(0), at ime O, reaches the

- condition 6 = 0 in finite time T, given by : T = W-!|(0)|.
- Proof Immediate upon checking that globally: ¢do/dt <0 for o # 0,

which is a well known condition for sliding mode existence (Utkin,
1978). The second part follows trivially from the fact that |o(t)=
-Wt Ho(0) ]

Proposition 2.2 A minimum phase nonlinear system of the form
(2.1) is locally asymptotically stabilizable to the equilibrinin point
(U.X(U),0) if the control action u is specified as a dynamical SM
control policy given by the solution of the following implicit,

time-varying, nonlinear discontinuous differential equation :

n o1
c(zug, o W) =-Y yiozi- Wegn[}, vzi+z] (211)
izl i=]

where yp = 0.
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Proof Immediate upon imposing on the auxiliary output function
o(z) defined in (2.7) the dynamics defined by (2.10). | ]

We assume that in (2.11) the quantity dc/du(®) is locally
nonzero and, hence, no singularities need to be locally considered.

Controller (2.11) is represented in terms of the original state
space coordinates x by using the input dependent state coordinate
transformation (2.5).

D ical PEM C 1 of Noali g
Consider the scalar PFM controlled dynamical system, in

which the constants 1) 15,13 and W, are all strictly positive
quantities.
8=-Wy

- _ | seno) for t St<ty + t[o(t)IT(0(k))
sl { 0 for t+ TO(WITIOM)] < t < 4+T{O()]

’ 1 for |o()] > i'lf
o) =

l rilo) for sl < 212
Tou forlow) 2 L

TiOW) ={ Tain + ;22 [Noan-Tai) (G1-H) for L <o) < L

Toin forlo@)| < ;L
k=012... : b, =t +Tow))

where it is assumed that r, <r,<r5. The t,'s represent jrregularly
spaced sampling instants, determined by the sampled values of the
duty cycle function, denoted here by To(t,)]. The duty cycle
function, T[o(t)], takes values on the closed interval [Ty, Tl
and it varies linearly with respect to o(t) in the region lo! < 1/r;. The
duty cycle, or sampling period, saturates to T, for large values of
o, and remains fixed at the constant lower bound Ty, for small
values of 6. At each sampling instant, t, ., the value of the width of
the sign-modulated, unit amplitude, control pulse is determined by
the sampled value of the duty ratio function, represented by t(o(1,)].
In general, the duty cycle and the duty ratio functions may be quite
}nde;;endem of each other. The function "sgn" stands for the signum
unction.

The following proposition establishes a sufficient condition for
the asymptotic stability to zero of the PFM controlled system (2.12).

it .3 The PFM controlled system (2.12) is asymptotically

stable to s = 0, if
0<r3WTpx<2 (2.13)
Proof Due to the piecewise constant nature of the control input and
the linearity of the continuous system, it suffices to study the

stability of the discretized version of (2.12) at the sampling instants.
An exact discretization of the PFM controlled system (2.12) yields :

o+ T)= o() - Wsgn[o(t)] tlo(t)] Tlow))
The stability of (2.14) follows easily using Lyapunov type of

arguments. For a proof of this proposition the reader is refered to
Sira-Ramirez and [Iancs—Sanu'ago (1992).

(2.14)

sitio A minimum phase nonlinear system of the

form (2.1) is locally asymptotically stabilizable to the equilibrium
gaim tU.X(U),0) if the control action u is specified as a dynamical
FM control policy given by the solution of the following implicit,
lime-varying, nonknear discontinuous differential equation : '

P} B-l
@l - @) =23 Y17 - WPEMe (Y, ¥2i + %)
i=t i=l

(2.16)
where y = 0.



Proof Immediate upon irﬁposing on the auxiliary output function
o(z) in (2.7) the asymptotically stable discontinuous dynamics
defined by (2.12). .
‘D ical PWM C 1 of Nonli S
Consider the scalar PWM controlled system, in whichr > 0
and W>0:
6=-Wyv
sgn o(ty) for 4, St <t +Tfo()]T
=PWMo) =
v «(0) 0 for tu+t{o(ITSt <ty + T
‘ 1 for |o(t) | >'|l-'
o) = l

2.17)

rlo®| for Jow | s L

k=012,.. ; tp41=tx+T
where the ty's represent regularly spaced sampling instants and
“sgn"” stands for the signum function.

Itis easy to see that (2.17) is just a particular case of the PFM
controlled system (2.12) in which the duty cycle function T(o(t)) is
now taken as a constant of value T. The following results follow
immediately from this fact

Proposition 2.5 The PWM controlled system (2.17) is
asymptotically stable to ¢ = 0if and only if:

0<rWT <2 2.18)
Proof Sufficiency is clear from the preceeding proposition.
Necesity follows from the fact that (2.18) is necessary to have o(Y)
lie in the region | o(y)! < 1/, for some k, independently of the initial
condition. In this region. the PWM controlled dynamics adopts the
form o(ty,1) = (1-TWT) a(1;). The result follows. ]

Proposition 2.6 A minimum phase nonlinear system of the form
(2.1) is locally asymptotically stabilizable to the equilibrium point
(U,X(U),0) if the control action u is specified as a dynamical PWM
control policy given by the solution of the following implicit,
time-varying, nonlinear discontinuous differential equation :

n n-]
UG, -+ @) =Y ¥z - WPWM Y ¥z + 20
i=l i=1

(2.19)
where yp = 0.

Proof Immediate upon imposing on the auxiliary output function

o(z) in (2.7) the asymptotically stable discontinuous dynamics

defined by (2.17). [ ]
ami jding M. on! in tems

Proposition 2.7 Consider the following one-dimensional Sampled
Sliding Mode controlled system:

6=-Wv
v= SSM[o(t)} = sign [a(ty)] forty <t <t+T 220
k=01,..; tg=t;+T

Then, given an ¢ > 0, there exist a sampling interval T(e) = ¢/ W for

which the trajectories of (2.20) satisfy the condition lo(1) S 2 ¢ for

alt>T(e)/ ko (0))

Proof The proof is immediate from the exact discretization of (2.20):
O(4+T) =o(ty) - W T sign[ o(t) ]

hence,
|o(n.+_'r)- oi)|=WT

The first part follows by letting WT = ¢. The second part is

immediate from the linearity of the system and the fact that for all t 2
0, dedt | = W [ ]

: Chattering of o, around the value 6 = 0, can be made of
arbitrarily small amplitude, according to the width of the sampling

interval T(¢). As T -> 0, the response of o to a SSM strategy
asymptotically converges to the response of a SM policy.

it .8 A minimum phase nonlinear system of the form
(2.1) is locally stabilizable around the equilibrium point
(U,X(U),0), modulo some small chattering, if the control action u
is specified as a dynamical SSM control policy given by the solution
of the following implicit, time-varying, nonlinear discontinuous
differential equation :

0 n-1
c(zud - @) =Y Yoz~ W SSMIY, 1% + 20)

i=] izl

(2.21)
where p = 0.

Proof Immediate upon imposing on the auxiliary output function
o(2) in (2.7) the discontinuous dynamics defined by (2.20). &

A sampled sliding mode control policy may also be viewed as
a particular case of a PWM control policy in which the pulse width
tiorg)]T is saturated to the value of the sampling interval T (i.e., the
duty ratio, tf{o(ty)). is equal to 1 for all k).

3. SOME APPLICATION EXAMPLES
3.1 Dynamical PFM, PWM and SSM control of a single

* link rigid robotic manipulator.

158

Our first example is concerned with the chattering-free
discontinuous feedback control of an exactly linearizable system
constituted by a single link rigid robotic manipulator. The various
dynamical discontinuous feedback controllers are obtained by
resorting to the GOCF of the "extended” system model of the
original given nonlinear plant.

Consider the following nonlinear dynamical model of a single

link robotic manipulator (Khalil 1992 ):
X1 =X2
g

3.1
Xy =- £ sinx) -f’—xz-bi—z u

where x; is the link angular position, x; is the angular velocity and u
represents the applied torque. The mass M is assumed to be
concentrated at the tip of the manipulator of length L. The constant
k is the viscous damping coefficient, while g is the gravity constant.

It is desired to synthesize, dynamical PFM, PWM and SSM
feedback control policies which drive the angular position of the
system to a constant desired angular position x;4. We, therefore,

consider the position efror X; - X4 as the output y of the system.

Consider now the extended system of (3.1) ( see Nijmeijer and
Van der Schaft , 1990).

X=X
(o= & i k A
X2 =-% 81N X; - X2+ ’U
b Mo 3.2)
u=v
< Y=SXp-Xud

where the control input derivative, denoted by v, plays the role of an
auxiliariy input function. It is easy to see that the rank condition
(2.4) is globally satisfied. Indeed:

dy
3(x,‘u) 1 0 0
m = rank 0 1 0 =3
a(x.u) fosn - _}i—z‘

The resulting GOCF of the extended system is now obtained as :
y=2;
L=z 3.3)
z =-%zzoos(zl+x1d)-ﬁzg+ﬁ‘%—2u

y=z



with :
2)=X1-Xia 3 22=X2 ;13=--Esinxl-#{-xﬁ»h—dll“2 u
Let the auxiliary output function o(z) be defined as:
34

H2) =23+ 1222 + 1123

with y; and y; positive constants, chosen in the standard second
order system form i.e., with damping factor § and natural frequency

on: 2= 250, and ) = ay2. Notice that if o(z) is stabilized to zero, |

possibly in finite time, by means of a discontinuous feedback
control policy, the constrained dynamics evolves in accordance to
the asymptotically stable second order dynamics : dz;/dt = z; ;
dzy/dt = - 2{wn 2;- ©n 2;, thus achieving the desired stabilizaton
task: z5 = x5 -> 0 and z; = x - x4 -> O.Notice that, in original
coordinates, the auxiliary output function ¢ is a control-input
dependent function:

o) =- & sen x4 (xi - x10)- (B -1 +ﬁ§~2u (.5

3.1.1 Dynamical PEM llcr design for t iul

Imposing on the auxiliary output function o(z), the

asymptotically stable dynamics of the PFM controlled system (2.12)

. one obtains the following static PWM controller for the extended
system, written in terms of the auxiliary input function v:

u=MLﬂ-§1--2§mn)23- 0Fz+

sz cos (z) +x19) - W PFM¢, ((z3 +28@nz> w%u)}

which, in original state and input coordinates, is rewritten as a
dynamical PFM controller given by the solution of the following
time-varying ordinary differential eguan'on for the original control
input torque u with discontinuous (PFM) right hand side :

(3.6)

= MLI{ (ﬁ -2§mn){- % sinxj- -}51- xﬁ»;il—z- u) -0F xp+ l% X3 cos(x;)

- WPFM, 1{% sin x + 03(xy-x10)- (b 2an v =L - u] ;

3.7
Notice that, from (3.6) and the definition in (2.6). the zero
dynamics is given, in this case by : v=du/dt=0.

Simulations were run for the dynamically PFM controlled
. manipulator (3.1), (3.7) with the following physical parameter
values : M =1(Kg],L=1{m), k=0, x;4=4[radl. g=98
[m/s2), with { = 0.8 and @, = 2.8 {rad/s]. The PFM controller
parameters were chosen as: W = 24 [rad/s]. T oy = 0.2 [s]. Tpyip =
0.05 [s}, ry = 0.1, ry = 0.05, r3= 0.4. In this case the sufficient
condition of Proposition 2.3 is verified as r3W Tpay = 192 <2
Figure 1 depicts the state trajectories of the controlled system clearly
showing asymptotic convergence of x; toward the desired angular
position x4 = 4.0 [rad], while steady state zero angular veloctiy is
achieved with no chattering being exhibited. Figure 2 shows the
PFM signal and the substantially smoothed out (chattering-free)
applied torq3ue input signal u, as gencrated by the dynamical PFM
controller (3.7). The effect of adding an integrator to the oniginal
input u of the exacty lincarizable system results, therefore, in a low
pass filtering effect on the input u of the original system.

312D ical PWM ller design for imul .
Imposing on the auxiliary outgm function o(z), the
asymptotically stable dynamics of the PWM controlled system

(2.17) one obiains, after some manipulations, the following
dynamical PWM controller for the manipulator system:

i= MLZ{ (ﬁ .2;@,.,{- % sinx;- {l— x;ﬁ{ u) -0} xy+ % x3 cos(x;)

: WPFM‘{'E tin % + oiarmie)- f 2en) s ;l%”u] L 8)

Simulations were run for the dynamically PWM controlled

manipulator (3.1),(3.8) with the same physical parameters, and the
same (constrained) second order system parameter values as in the
&cvious example. The PWM controller parameters were chosen as:

=24, T=0.2[s), r=0.1 [s/rad]. In this case the necessary and
sufficient condition of Proposition 2.5 is verified as TWT = 0.48 <
2. Figure 3 depicts the state trajectories of the dynamically PWM
controlled system clearly showing convergence of x) to the desired
angular position and convergence to zero of the corresponding
angular veloctiy. Figure 4 shows the PWM signal and the
chattering-free applied torque input signal u, as generated by the
dynamical PWM controller (3.8).

313D ical SSM ller design for the manipul
Imposing now on the auxiliary output function o(2), the

dynamics in (2.20) one easily obtains the following dynamical SSM
controller:

u =ML2‘ (ﬁ--z;«:n)(-fsinx]- ﬁxzﬁu) -0f X3+ %xz cos(x;)

.WSSM[- f sin x; + @i(x;-Xg) - (_hk{ -2§uyn)x2+ —M!L—z-u]}

3.9
Simulations were run for the dynamically SSM controlled
manipulator (3.1),(3.9) with the same physical parameters. and the
same (constrained) second order system parameter values as in the
B:;evious examples. The SSM controller parameter were chosen as:
=24 [rad/s), T =0.2 [s). Figure 5 depicts the state trajectories of
the dynamically PWM controlled system clearly showing
convergence to the desired angular position and convergence (o zero
of the corresponding angular veloctiy, with no chattering being
exhibited. Figure 6 shows the evolution of the auxiliary output
function signal and the applied torque input signal u, exhibiting a
s;ng]l chattering, as generated by the dynamical SSM controller
(3.9).

3.2 Dynamical PFM, PWM and SSM Contro! of a double -
effect evaporator.

3.2.1 The double effect evaporator mode]

The following doble effect evaporator model is taken from
Montano and Silva (1991).

X = 81F0(C0 - Xl) + 52 X1 u

) (3.10)

%2= 83F0 (x1 - x2) +[84x; + 85 x;] v
where x, represents the product concentration in the first stage of the
evaporator, while x stands for the output concentration of the
product at the second stage. The control input u is a positive
quantity representing the steam flow comming from a boiler. We
take as the output of the system the output concentration error : y =
X2-Xg With X34 being the required constant value of the output

'product concentration. The rest of the parameters in (3.10) are
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assumed to be known positive constants, except for 84 which is |
negative. We summarize below the necessary steps to obtain a
dynamical PFM regulator for the given system. :

3.2.2 Design of a dynamical PFM regulator for concentration
control in a double effect evaporator
Rani fit }
9y
det g; Sdﬂ[ & ! =-(5;F0+84 u)
3% 53Fo + 84 u - 53F0 + 550

The rank condition can only be violated by a constant value of
the control input u given by : u = - 83 Fg/ 84.

Input-dependent state coordinate transformation to obtain GOCF

23=X3-Xy : 22=8:Fp(x;-x)) +[54XH55X2]“ GBI

! - (8su - 83Fo)z; + x2a)
1= :

83]:0 + 54“

X2=2)+ X4



G x. I l ] .l. . l [ [ ‘I l
1=,
1= (85 -B3F0 )23 + 83Fo(Bs + B5) (z) + x30) + Bazs
53Fo + 54!.1
+ (Szu ~51Fo )[(53!:0 -85“ le + x2d) + Zz] +C051F(;(53Fo +54u )

y=2z
(3.12)
Zero dypamics

sFolBa+B9) X2y, (82u -81Fo J[(8:Fo -850 ) x2a )
53Fo + 84u

+coB Fol83F0 +84u )= 0 G13)

The equilibrium points of the zero dynamics are given by the
real solutions of the following quadratic algebraic equation:

{8u -81Fo )[(83Fo0-85u ) xz4 ] + o8, Fof83Fo+84u } = 0

The smallest root of the above polynomial equation
corresponds to the stable equilibrium point for the zero dynamics.
ut function in transformed and original inate

a(z) =23+ Y121

(3.14)
G(x) = 83F¢(x; - x3) + [54 Xy +8s xz] v+ 7Y)(x7 - X24)
PEM controller in original coordinates
0= S — -(53Fo +54U (leg (Co = Xl) + 82 X1 u)
54X)+ 55)&1

- (8su -83Fof85F0 (x; - x2) +[84 x1 + 85 x3] u)
- 1i(83F0 (x; - x2) + [ %, + 85 x]u)

-W PFMa( 8aFalxy - x2)+ (84 %1+ 85 3] u + milxa- Xza)ﬂ
(3.15)
Impasse points for the dynamical controller occur on the line :
8,x1+85x3 = 0, which may represent a physically meaningful
condition, due to negativity of 84 and the possitivity of the
concentrations. Results are valid far from this singularity condition.
imulagi L
The foliowing parameter values were used in the simulations
of the dynamical P%M controlled system (3.10), (3.15).
Fo=2.525 [ Kg/min] . ¢9=0.04,
8; = 0.0105, 8, = 8.509 x 103
83=29.523x103 | 8= -7.699 x 103
85 =10.304 x 10°3

The PFM controller paramdcts were set to be:

W=8x10% H r|=250;rz=3(l);r3=400
Timas = 2 [min] ; Ty = 1{min] ; 1, =0.1

Figure 7 shows the state response of the dynamical PFM
controlled system asymptotically converging toward the desired
equilibrium point given by x54 = 0.0939 while the concentration x;
converges to its equilibrium value 0.07. Figure 8 depicts the
smoothed control input trajectory. Rather similar responses were
obtained for the PWM and the SSM control strategies based on the
same auxiliary output function.

4. CONCLUSIONS

The feasibility of effective chattering-free discontinuous
feedback controllers of the PFM, PWM and SSM types for robust
stabilizaton of nonlinear systems has been demonstrated via use of
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dynamical feedback control strategies. These strategies are based on
stabilization of suitably specified auxiliary output functions defined
on the basis of generalized phase variables of Fliess's GOCF.
Stabilizing sliding mode controllers, sampled or not. pulse-
frequency-modulation, and pulse-width-modulation controller
design procedures, for nonlinear dynamical plants, are unified via
this technique, which is based on elementary results derived from
the differential algebraic approach to system dynamics. The
fundamental stability features and quality of the controlled responses
obtained by using the various studied discontinuous feedback
alternatives are basically the same. Their main differences being
perhaps located on the transient responses. The results here
presented can be extended to decouplable multivariable nonlnear
plants and to other classes of dynamical systems.
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Figure 5. Dynamical SSM controlled response of robotic maniplator
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Figure 2. PFM input signallend applied input torque. Figure 6. Auxiliary output function and applied input torque.
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Figure 8. Applied input signal
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