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Summary

Discontinuous feedback stabilization of nonlinear systems, expressed in Generalized State
represcntation form, is accomplished by zeroing of a suitable input-dependent manifold.
Pulse-Frequency-Modulation, Pulse Width-Modulation and Sampled Sliding Mode Control
straicgies are treatcd from a unified viewpoint which naturally arises from fundamental results of
the Differential Algebraic approach to systems dynamics and control. The approach naturally leads
to dynamical discontinuous feedback policies resulting in (chattering-free) smoothed constrained
linearization and induced robust asymptotic output error stabilization. The results are applicable in a
variety of nonlinear control problems, including stabilization, tracking, and model matching.
INustrative examples from non-traditional application ateas, such as chemical process control and
hydrautic systems control, are presented with simulations.
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1. INTRODUCTION -

Recently, results from the differential algebraic approach to
control theory, pioneered by Prof. Michel Fliess {1]-[2), have
greatly improved the applicability of discontinuous feedback
strategies, specially thosc of the sliding mode (SM) type, leading
lo asymplotic stabilization, and tracking, in nonlincar systems (scc
Sira-Ramirez [3]-[4] for application examples in mechanical and
electro-mechanical systems). Sone of the traditional disadvantages
of sliding mode control policies are fundamentally related 10 the
chattering of input and state variables responsc signals (Sce Utkin
[5)). These difficulties are casily circumvented via dynamical
sliding mode controllers while retaining the outstanding robustness,
and simplicity, of this class of fecdback control scherrics.

In this article, Fliess's Generalized Observability Canonical
Fonui (GOCEF) is shown to naturally allow for dynamical feedback
controller design based on pulse-frequency-modulation (PFM)
strategies, pulse-width-modulation (PWM) policies and sampled
sliding modes (SSM). The obtained control input signals are
substantially smoothed with respect to their corresponding static
alternative and, hence, chattering-free discontinuously controlled
responses are generated. The obtained PWM and PEM controller
designs do not resort to traditional approximation schemes, based
on (infinte frequency) average models, of the discontinuously
controlled systems (see, Sira-Ramirez [6]). These features arc
particularly important in the regulation of mechanical and chemical
systems, in which large and fast input vibrations, or jump
discontinuities, cannot be simply allowed on the actuators, while a
necd still exists for certain degree of robustness and precision of the
pioposed control scheme.

The synthesis of the several dynamical discontinuous
regulators, here proposed, is cnlirely based on Fliess' Generalized
Observability Canonical Form (GOCF) for nonlinear systems (Sec
[2]). In Section 2 of this article, we briefly address the dynamical
SM control solution to the output stabilization problem and present
the basic results of the PFM the PWM and the SSM controller
design schemes, In scction 3, we present non-traditional application
cxamples on which we test cach one of the proposed discontinuous
fecedback control techniques previously mentioned. The first
application example, taken from Parrish and Brosilov {7), is
concerned with the tolal concentration regulation in an isothermal
Continuously Stirred Tank Reactor (CSTR). A second example
deals with liquid level control in a coupled tank system. The
presented examples include computer simulations. Concluding
remarks are collected at the end of the article, in Section 4,

This work was supported by the Consejo de Desarrollo Cientifico,
Humanistico y Tecnolégico of the Universidad de Los Andes under
Research Grant 1-358-91.

47

2. DYNAMICAL DISCONTINUOUS FEEDBACK
CONTROL OF NONLINEAR SYSTEMS

:, The results of this section are easily extended to tracking
problems (sec {3),[4] ) and to multivariable cases.

2.1 Fliess's Genceralized Obscrvability Canonical Formi.

It has been shown in [2] (sec also Conte et al {8] ) thata
nonlincar, single-input single-output n- dimensional system given

Wt generalized state representation form:

X = YRR, ()
X = f(x,u, LI ) -,
y =h(x,u, 0, - .. ,u®)

can be locally transformied, via an input-dependent state coordinate
transformation of the form :

z = O(X,,4,...,ul® 1) @2.2)
into a system of the form:
71=29
i2 =23
.. @5

Zn = c(z,u,i,...,u(®)

y=2
- provided the following "observability” matrix of the system (2.1) is
full rank:
_a!)(x,u,u'v 000 ,u(B))-
ox
@(1)(,(’1,,.1‘ o0 ,u(Bﬂ)).
ax

(2.4)

oh™ D(x,u,u,...,u@-1)

ax

In (2.3), o is assumed to be a strictly positive integer. The
results can be extended to systems exactly linearizable by static state
feedback, i.e., for systems in which a= 0 (see Sira-Ramirez [9],
and the second example presented in Section 3).



It must bc remarked, however, that, in general, (2.3) may not be,
necessarily, n-dimensional.

The input—dcﬁendcm state coordinate transformation (2.2) is
evidendy given by the local diffeomorphism: .

h(x,u,0,: - -,ulB)

h(l)(x‘u'ﬁ,. 0 .,u(ﬂ*l))
z=®(x,u,0,...,u@ 1)) = 2.5)

h(1)(x,u,u,...,u(@- 1)

Suppose u = U, x = X(U) describes a constant equilibrium
point for the original system (2.1), such that h(X(U),U, 0....,0 ) is
zero, then z = 0 is an equilibrium point of (2.3). The autonomous
dynamics described by:

c(0,u,4,...,u(®) = 0 (2.6)

is the zero dynamics (sce Fliess [10] ). The stability nature of an
equilibium point u = U of (2.6) determines the minimum or’
non-minimum phase character of the system at the corresponding
cquilibrium point. We denote the abové constant equilibrium point
‘for system (2.1) as (X(U),U,0).

12.2 A GOCF Approach to Dynamical Discontinuous
Feedback Controller Design for Nonlincar Systems.

Consider the following auxiliary output function s : RR-> R,
defined in terms of the transformed variables z,

n-l
o(z) =( ) 'Yizi)+ z %))

i=1

such that the following corresponding polynomial in the complex
variable A is Hurwitz:
-1

yrt @.8)
1

i

Itis easy to sce that, provided the system is locally minimum
phase, if (2.7) is forcefully constrained to zero (whether in finite
time, or in an asymptotically stable fashion) by means of
appropriate control actions (possibly of discontinuous nature), the -
resulting controlled dynamics locally evolves in accordance with:

21=2)
=13
2.9

n-1
T =-, Y
i=l
y=z

which is asymptotically stable to zero.

Two of the dynamical discontinuous feedback controller
design schemes, here proposed, rely on inducing an asymptotically
stable lincar time invariant controlled dynamics such as (2.9), with
cigenvalues placeable at will. This is done by driving the proposed
auxiliary output function o(z) to zero. SM controllers can always
accomplish such a task in finite time, PFM and PWM controllers,
on the other hand, can only accomplish this task in an asymptotially
stable fashion, while SSM control can only do it approximately.

Dynamical Sliding Mode Control of Nonlincar Systems .
‘
Proposition 2.1 Let W be a strictly positive quantity and lct "sgn”
stand for the signum function. The one dimensional discontinuous
system :

5=-Wsgno (2.10)
globally exhibits a sliding regime on ¢ = 0. Furthermore, any
trajectory starting on the valuc o = 6(0), at time 0, reaches the’
condition ¢ = 0 in finite time T, given by : 1'= W-1{o(0)|.

Proof Immediate upon checking that globally: o do/dt <0 fore 20,
"which is a well known condition for sliding mode existence [5].

The second part follows trivially from the fact that Jo(t) =-Wt +

lo(0)! [

Proposition 2.2 A minimum phase nonlincar system of the formi
(2.1) is locally asymptotically stabilizable to the equilibrium point
(U,X(U),0) if the control action u is specified as a dynamical SM
control policy given by the solution of the following implicit,
time-varying, nonlincar discontinuous differential cquation :

n n-1
c(zug, -+ u®) =Y Y1z - WsgnlY, Yizi + 7a)
i=l i=1 (2.11)
where yo = 0.

. Proof Immediate upon imposing on the auxiliary output function

a(z) in (2.7) the discontinuous dynamics defined by (2.10). ]

We assume that in (2.11) the quantity dc/dut® is locally
nonzero and, hence, no singularities need to be locally considered.

Controller (2.11) is easily represented in terms of the
original state space coordinates x by using the input dependent state
coondinate transformation (2.5).

Dynamical PFM Control of Nonlinear Systems

Consider the scalar PFM controlled dynamical system, in
which the constants ry, 15,13 and W, are all strictly positive
quantities.
0=-Wyv

- _ | sgno() for tx <t <ty +t{o(tTIo(t]
v =PFMz1(0) = { 0 for ty+T[o(t)]TIOM)] St < 4+T[o()]

1 for |o(t)] > ;!-
to(t)] = !
11 |o@)] for [s())] S rll_

Tass forlo] 2 1

Tlow) = I Tain + 722 [Toac Taia] (00 for L <low] < L
Tain forlo®)]s

K=0,12.. by =te+1[o(t)).
(2.12)

where it is assumed that r, <r;<r;. The t.'s represent jrregularly

spaced sampling instants, deterimined by the sampled values of the )
duty cycle function, denoted here by T[o(t,)]. The duty cycle

function, T[o(t)}, takes values on the closed interval [Ty, Traxl

and it varies lincarly with respect to o(t) in the region lol < 1/r,.

The duty cycle, or sanpling period, saturates to T, for large:
values of o, and remains fixed at the constant lower bound T, for

small values of o. At each samipling instant, t, , the value of the

width of the sign-modulated, unit amplitude, control pulse is

determined by the sampled value of the duty ratio function,

represented by t{o(t)]. In general, the duty cycle and the duty ratio

functions may be quite indepcndent of each other. The function

"sgn" stands for the signum function.

The following proposition establishes a sufficient condition ‘
for the asymptotic stability to zero of the PFM coatrolled system
.12

Proposition 2.3 The PFM controlled system (2.12) is
asymptotically stable tos =0, if

0 <r3WTpa <2 (2.13)
Proof Due to the piecewise constant nature of the control input and
the linearity of the continuous system, it suffices to study the
stability of the discretized version of (2.12) at the sampling

instants. An exact discretization of the PFM controlled system
(2.12) yields :

O(te+T)= O(te) - Wsgn[o()] 1[0 To))  (2.14)

Suppose the initial condition ¢{0) is chosen decp into the
region lol > 1/r;. The evolution of the sampled valucs of o(t) obey,

an



according to (2.14):

S+ )= 0(ty) - W Tiax for o(l) > 0

O(te+T)= 0(t) + W Toay foro() <0 213

Hence, given an arbitrary initial condition 6(0) for o, it is obvious
from (2.15) that the condition : 0 < r;WT, .. < 2 is sufficient to
ensure that the value of o(1,) will be eventually found within the
bounded region ol < 1/r,. This is due to the fact that the controlled
increments taken by of(ty). in the considered region lol > 1/r,, are of
width WT, ., and, therefore, the condition: WT ., < 2/ry also
guarantecs that-WT,.. < 2/r, . It follows that «(t;) can not "jump"
over the band lol < 1/r; and, hence, o(t,) will land on this region for
sufficiently large k. Two possibilities arise then : either o(t,) is
found in the "band” 1/r3 < lo(t )l < 1/ry , or o(t) satisfies lo(t )} <

1/ry . Suppose first that: 1r; <lo{t)l < 1/r,, for some k. In this -

region, the value of lo(t,)! can only further decrease, as it is easily
secn from (2.13). Indeed, the increments: Ac(t) = o(t,,) - oft),
taken by ¢ in the region 1/r3 < o <l/ry, satisfy: WT i, < las(t)!
< WT 4+ Since, by asswinption, WT,,,. < 2/ry,then one has :
WT i < lao(t)l < WT . < 2/r5< 2la(t)l. Tt follows that lo(t,)I
further decreases and that the controlled evolution of o(t,) will
cventually reach the region: lo(t ) < rs. In this last region the
sampled valucs of g evolve satisfying :

o+ T)= 0(t) - i W Tin Sgn[G(lk)]O(lk)i
=(l-nW Tmin) (k)

which is asymptotically stable to zero, if and only if : 0 <1 WT,

< 2. This last condition is evidently equivalent to Wy, < 2/r,.
Notice, however, that from the assumptions about the paramelers in
(2.12) : W < WTa < 2/r3 < 2/1y. ic., the condition (2.13)
implics the asymptotical stability requircment for (2.12). The result
follows. "

Proposition 2,4 A minimum phase nonlinear system of the forin
(2.1) is locally asymptotically stabilizable to the equilibrium point
(U.X(U),0) if the control action u is specified as a dynamical PFM
control policy given by the solution of the following implicit,
timc-varying, nonlinear discontinuous diffcrential equation :

. n n-1
c(zud, oo u@®) =23 ¥,z - W PFMc (Y, Yizi + 20]

i=1
' (2.16)
where yo = 0.

Proof Immediate upon imposing on the auxiliary output function
a(z) in (2.7) the asymptotically stable discontinuous dynamics
defined by (2.12). | ]

Dynamical PWM Control of Nonlincar Systems

Consider the scalar PWM controlicd system, in which r > 0
adW>0:

G=-Wyv
_ _ | sgn oty for e St<t + (o)l
VEPWMHO) = 4 o bt oI S 1< b+ T
@17
1 for jo] > 1
o)) =

rio®} for jo)| < %

k=01.2,.. ; tk+1=tx+T
where the ty's represent regularly spaced sampling instants and
“sgn” stands for the signum function.

Itis casy to scc that (2.17) is just a particular casc of the
P'EM controlled system (2.12) in which the duty cycle function
1(o(ty)) is now taken as a constant of valuc T. The following
msults follow inunediately from this fact.

Proposition 2.5 The PWM controlled system (2.17) is
asymptotically stable (o o = 0 if and only if:

0<rWT<2 (218)
Proof Sufficiency is clear from the preceeding proposition.
Necesity follows from the fact that (2.18) is necessary to have o(ty)
lic in the region |o(t)l < 1/r, for some K, independently of the *
initial condition. In this region, the PWM controlled dynamics
adopts the form o(ty, 1) = (1-tWT) o(ty). The result follows. n

Proposition 2.6. A minimum phase nonlinear system of the form )
(2.1) is locally asymptotically stabilizable to the equilibrium point
(U,X(U),0) if the control action u is specified as a dynamical ’

* PWM control policy given by the solution of the following implicit,

time-varying, nonlinear discontinuous differential equation :

n p-1
c(z b, - 0®) =Y ¥i12i - W PWMeY, iZi + 24)

i=1 i=1
(2.19)
where yp = 0.

Proof Immediate upon imposing on the auxiliary output function
o(z) in (2.7) the asymptotically stable discontinuous dynamics
defined by (2.17). u

Dynamical Sampled Sliding Mode Control of Nonlinear Systens,

Proposition 2.7 Consider the foliowing one-dimensional Sampled
Sliding Mode controlled system:

G=-Wyv
v= SSM[o(t)] = sign {Xty)] forty <t<y+T 2.20)
k=01,..; tg=t+T

Then, given an ¢ > 0, there exist a sampling interval T(e) = e/ W

for which the trajectories satisfy the condition lo(t)[<2 ¢ for all

A>T () lo(0) 1.

" Proof The proof is immediate from the exact discretization of

- hence,

o(t+T) = o(t) - W Tsign[ o(t) ]
|o+T)-o(t)|= WT

The first part follows by letting WT = . The second part is
immediate from the lineanty of the system and the fact that for all t
20, ldo/dt | =W | ]

Chattering of ¢, around the value ¢ = 0, can be made of
arbitrarily small amplitude, according to the width of the sampling
interval T(e). As T -> 0, the responsc of ¢ to a SSM stategy

. asymptotically converges to the response of a SM policy.

Proposition 2.8 A minimum phase nonlinear system of the form
(2.1) is locally stabilizable around the equilibrium point
(U,X(U),0), modulo some small chattering, if the control action u
is specified as a dynamical SSM control policy given by the
solution of the following implicit, time-varying, nonlinear
discontinuous differential equation :

n n-1
c(zug, -+ u®) ==Y ¥i1zi- W SSMLY, ¥z + 2]
i=l i=1 2.21)

 whereyg = 0.

Proof Immediate upon imposing on the auxiliaty output function
o(z) in (2.7) the discontinuous dynamics defined by (2.20). [ ]

A sampled sliding mode control policy may also be viewed ‘
as a particular case of a PWM control policy in which the pulse
width t[o(t)]T is saturated to the value of the sampling interval T

(te., the duty ratio, tfo(t)], is equal to 1 for all k).

3. SOME APPLICATION EXAMPLES

3.1 Dynamical Discontinuous Feedback Policies in’
Concentration Control for an Exothermic Continuously

Stirred Tank Reactor.
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“ Consider the following nonlinear dynamical controlled
model of an exothermic reaction occuring inside a CSTR (see -
Parrish and Brosilov {7]), where the control objective is to regulate



the outlet concentration through manipulation of the water jacket
temperature :

%) =F\;(Co-i1)-axxc‘b/"2 .
X = {:,—(To -X2) + %Ip‘ xlc-b/xz - V/hcp' (X2 -u) 3. 1')‘
y=xz2- T

Where x, represents the product concentration. The state

variable x , represents the reactor temperature. The control variable-

w'is the water jacket temperature. F is the reactor throughput in
Ib/hr, ¢ is the inlet flow concentration in 1b/lb, Ty is the inlet flow
temperature measured in deg.R, ¢ is the material heat capacity in
BTUAbL.R while V and L. are, respectively, the reactor holdup (in
1b.) and the heat of the reaction (in BTU/Ib.) . The constant h is the
heat transfer paramcter (in BTU/hr.R) , b is the activation constant.
(in deg R) and a is the pre-exponential factor in hr! . A constant
temperature T is to be stably maintained to indirectly control the
product concentration X, to its constant equilibrium value X;.

. A stable constant equilibrinm point for this system is then
given by :

Xy (M= -

X2=T',X1
1+V/Pac

coe™>

U= T~ —P— (To-T EL"
4= o= +V/pae—b/r

(3;2) 1

We next summarize the dekign procedure leading to a:
dynamical stabilizing PFM controller for system (3.1), based on the .

GOCF of the system. As it is easily verified the relative degree of
the system (3.1) is equal to one and, hence, the dimension of the
zero dynamics is also onc.

The input-de
system (3.1) into GOCEF is given by:

z; =Xo~T

Zy= 3\’7 (To—x2)+ act—l; xc-bha ~ .thp‘ (x2-1) 3.3)

X = %Mzﬂ) 2 _ E -T2+ th,,' (@+T-u)

X3 =7;+T (3.4)

The resulting GOCF is then :
21 =7
7= ﬂL e'.b/(Zn +T) [F— co
- .!Leb/(zl+T) E (1 +Yar-bz,4T) J?V

]

F (z4m2
(zz - {:,— (Tp-T-z;) + thp- (24T —u )) ]

_(%

(3.5)
o by

+ ch)_ 22+ Ve, i

y=7;

For discontinuous feedback stabilization purposes we

ndent statc coordinate transfonnation taking

Ve, !
§ =P,
"

_%e"’/(z-ﬂ)
)R JCY ¥z, _h\/._. ;
[v°" PR (”*‘"’5 tessT) zlmz) (.8)

(zz = 1\37 (To~T-21) + Vc,’,“ (24T ~u ))

+ (E+ _hcpv 1)z —WPFM,_T[o(z,u)]] }

The zero dynamics results in an asymptotically stable system
of the form:

ce ]
1+ Vfaebh

3.9

u,— —E-(H—ac—b/l‘) l:u- T+-F PF ('1‘0—’1’)+aLV

In original coordinates the dynamical PFM controller and the
corresponding auxiliary output function are obtained as:

{(5 Ak _7’)E(rrx2)+

aL xle'b/xz— D (xg-u)- @I—e—b/xz( E (coxp) - axle‘b/Xz)
Vep (3.10)

Ve
=%
U=

~W PFM1{ o(x,u) ]}

o(xu) =E v To-nT- (F +h ~-‘11) X2+ aL. xie™%h: +—h -u
Vep Vep
@3.11)
Dynamical PWM Contoller Design

The dynamical PWM coatroller is readily obtained by »

imposing on the auxiliary output function, previously defined in:

(3.6), or (3.11), the closed loop PWM regulated dynamics in

(2.17). This results in :

propose, in transformed coordinates, the following auxiliary output

function:

C=2z2+m1zy ; N >0 3.6)

Evidcntly, the restricted asymptotically sable motions of the .

controlled dynamics when o is forced to zero are governed by:

2y =Nz 3.7

The dynmucal PF 'M controller, in transfonmed coordinates,
is given by:
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_Veo [E X
hp{(V“‘th.{'%" e g"‘)E(T""””

3L— xle‘b/Xz—— h (xz -u) ﬁL 'b/XZ(E (co—xl) -a xle‘b/xz)

3.12)
- WPWM o(x,uw) ]}
Dynamical Sampled Sliding Mode Controller Design
Similarly, a dynamical SSM controller is obtained as:

i=Yer[(Ey b _abl by |E '

U= {(V+V°p < "x% 1|y Toxa) +

ﬂL xie=bh2 = h (x; -u) iﬂ‘e‘b/xz ( E (co-xp) -2 xle’b/xz)
(3.13)

—W SSM[ o(x.u) ]

where o(x,u) is as in (3.11) and the SSM control operation is
defined in (2.20).

3.2 Simulation Results

!

Simulatjons were performed for a discontinuously controllcd ‘

exothermic CSTR (3.1) using the PFM, the PWM and the SSM
controllers obtained in (3.10), (3.12)and (3.13), with the same
input-depcndent stabilizing manifold (3.11) for the threc
controllers. The CSTR is characterized by the following
parameters, taken after [7]:

F = 20001b/hr ;
a=7.08x1010hr! ;b

co=0.501b/1b; V =24001b.;
= 15080 deg R ; Ty = 5320 deg.R ;



L=600BTU/MD. ; ¢p=0.75 BTUMb.R;
h=15000 BTUMNrR;

For such parameler values, the equilibrium point (3.2) of
system (3.1) results in :

Xy (1) =T =600deg R; u=U(600)=107.679 deg. R ;
X1(600) =0.246 1b/1b.

‘The PFM controller parameters were chosen as:
11=8 W=50,, Ty =04 hr, Ty, =5 x102hr
1y =4 x102, 1, =2x102,13=0.3.

The PWM controller parameters were set to be:
nn =8, W=30,T=0.1hr, r, =0.1
Design paramicters for the SSM controller were chosen as:
71=8, W=35

Figure 1 to 3 portray the time responses of the dynamical
discontinuously controllcd state variables, X, and x,, the chattering-
free (smoothed) continuous control input trajectory, u(t), and the
evolution of the auxiliary output function o(x,u), for the PFM, the
PWM and the SSM controlled systens, respectively.

3.3 Dynamical PFM Fcedback Control in the Regulation
of Liquid Level in a Coupled Tank System.

The dynamical (nonnalized) state space model of two
coupled tanks, a conical one discharging liquid on a cylindrical one -
paced below, is given, according to [11], by the following system:

2 2

%1 =-xP? +xfu
% =x{? -x}? (3.14)
y=Xx2 '

where xjand x, arc, respectively, the heigths of the liquid levels on'
the upper and lower tanks. The control input u represents the input
flow to the first tank.- ) ’

System (3.14) is a globally feedback lincarizable system,-
and, as such, only static (1.e., chattering) discontinuous feedbacks
controllers may be designed when using the techniques proposed in.
Section 2. From a practical stand point a bang-bang behavior for
the input flow u is quitc unacceptable. To circumvent this
limitation, we develop below a dynaniical discontinuous feedback
policy for system (3.14), by first resorting to the "extended
system" (Sec Nijmeijer and van der Schaft [12]). We shall only
present the dynamical PFM controller case.

The cxtended.system, with auxiliary input v, is given by:
X1 =-xP? +x¢€ x3
%7 = x}2 -x}2

X3=v
y=x3-X

(3.15)

where X is the desired cqulibrium Ievel for the liquid in the second
tank.

The GOCF of system (3.15) is obtained as :
21=2)
"Lz =13
2 = Lea+ {21+ X122 (24 214X ] V229

{<zz+[zx+xw2)" + 4 Xp e a2

‘/Aw;{zn[zh«]”z)'J + %(zz’r[zwx]m)[zwxl'm-%—)J

L
1+

2 [z X]V + L2204 X)) (204 X) 22
y =z

The stabilizing auxiliary output function, in transformed and
original coordinates, is given by :

CZ)=N21+223+ 23 (317
o(xu) = Yi(x2=X) + Yax}2 = x§12) +

L= L2512 _dx=2(]—x= 2y
2 > 1 X (1-x7'u)

3.18)

Imposing on (3.17) the closed loop stable PFM dynamics in
(2.12) we obtain a static PFM controller for the auxiliray input
function v. This static controller, however, constitutes a dynamical
PFM feedback controller when written in original coordinates x, u:

v=-4 (zﬁ-%{zﬁ-X]'lﬂzz) x

S At

+

3.19)
+§5 {-1215 [{z2+X)¥22; - 21223 - 2112, -2W PFM, 1{0'(2)]]
with: .
E=z 421 + X] 12

The zero dynamics, associated to the dynamical closed loop
system; is readily obtained from (3.16) as: ’
=0 (3.20)

Eventhough the system is not minimum phase, the
discontinuous nature of the dynamic PFM controller is scen to drive
to zcro any incipient deviation from the equilibrium values of the
state and control input. It is in this sense that roubustness against
perturbations is preserved by the dynamic discontinuous controller.

3.4 Simulation Resuits

Simulations were performed for a dynamical PFM fecdback
controlled tank system (3.14) with dynamical controller (3.19) and
stabilizing output function (3.18). The parameter values for the
system and the controller were chosen as:

X=10; ¥ =016 , » = 0.72; Tpax=2 ; Thin =1
’ 1 =200, ry= 150, r3=250.

The equilibrium point of the controlled system is :
XiX)=X;X)=X=1; u=U(l)= L

Figure 4 porirays the asymptotically stable time response of
the dynamical PFM controlled state variables, x; and x,, the
chattering-free (smoothed) continuous control input trajectory, u(t),
and the evolution of the auxiliary output function o(x,u).

4, CONCL.USIONS

The feasibility of effective chattering-frec discontinuous
feedback controllers of-the PEM, PWM and SSM types for robust
stabilizaton of nonlinear systems has been demonstrated via use of
dynamical fecdback control strategics. These strategies are based on
stabilization of suitably specified auxiliary output functions defined -
on the basis of generalized phase variables of Fliess's GOCF. -
Stabilizing sliding modc controllers, sampled or not, pulse-
frequency-modulation, and pulse-width-modulation controller

" design procedures, for nonlinear dynamical plants, are unified via

‘this technique, which is based on elementary results derived from '

* the differential algebraic approach to system dynamics. The results
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can be extended to multivariable plants and to other classes of .
dynamical systems.
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Figure 1. State and input trajcctories of dynamically PFM
controlled exothennic CSTR system.
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Figure 2. State and input trajectories of dynamically PWM
controlled exothermiic CSTR system.

Figure 3. State and input tra)ectones of dynamically SSM
controlled exothermic CSTR system.
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Figure 4. State and input trajectories of dynamically PFM
controlied coupled tank systent.



