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Summary Sliding mode control of nonlinear systems is reformulated from a differential
algebraic perspective. Input-depcndent sliding surfaces, possibly including time derivatives of
the input signal, naturally arise from elementary differential algebraic results as applied to

nonlincar controlled systems. This viewpoint directly

leads to consider the possibilities of

dynamically generated sliding mode controllers, characterizing sliding motions genericall
devoid of undersirable input chattering. A definite connection b%tween gontrollabilgity and !hZ

possibility of creation of "higher order”

sliding regimes is established via differential algebra.
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1. INTRODUCTION

Sliding mode control of dynamical systems has a lonég

history of theoretical and practical developments. A thorough
chronological collection of journal articles, and conference
presentations, has been gathered by Professor S.V. Emelyanov
(1989), (1990a), while dctailed surveys have been produced over
the years by Utkin (1977), (1984), (1987). Background on the
‘subject may be acquired from the books written by Emelyanov
(1967), Utkin (1973). (1992), Itkis (1976) and Biihler (1986).

Recent developments in nonlinear systems include the use of
Differential Algebra (see Kolchin 1973) for the formulation,
understanding, and conceptual solution of long standing problems
in automatic control. Developments in this arca are fundamentally
due to Prof. M. Fliess (1986,1988, 1989a, 1989b,1989¢,1990a,
1990b). Some other pionecring contributions were also
independently presented by Pommaret (1983, 1986). Sliding mode
control, and discontinuous feedback control, in general, have also
benefited from this new trend. A seminal contribution in the use of
differential algebraic results to sliding mode control was given by
Fliess and Messager (1990). In that article, an example was
presented in which no continuous feedback controller can achieve
asymptotic stability to the origin, while a discontinuous feedback
controller, based on sliding modes, does result in asymptotically
stable behavior. These basic results were later extended, and used,
in several case studies, by Sira-Ramirez er al (1992), Sira-Ramirez
and Lischinsky-Arenas (1991) and by Sira-Ramirez (1992a-
1992d). A most interesting article dealing with multivariable linear
systems and the regulation of non-minimum phase systems is that
of Fliess and Messager (1991). Extensions to pulse-width-
modulation and pulse-frequency-modulation control strategies
have becn contributed by Sira-Ramirez (1991b, 1992¢, 1992f).

This article is an attempt to present a reapproachment to
sliding mode control theory, from the differential algebraic
viewpoint. Section 2 of this article is devoted to present an
application example which utilizes a sliding surface which not only
depends on the state of the system, but also on the system's input.
A dynamical sliding mode controller is then synthesized which
produces smoothed feedback signals to the plant. This example
motivates the need for the more general class of sliding surfaces
and the several formalizations that follow. Section 3 presents some
implications of the differential algebraic approach in sliding mode
controller synthesis. In particular, a clear connection is established
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betwecn "higher order” slidiAng motions and c-onlmllability. Some
suggestions for further research are pointed at the end, in the

‘ conclusions section.

2. ADYNAMICAL SLIDING MODE CONTROLLER
EXAMPLE

A rather general model for nonlinear single-input
single-output nonlinear systems is constituted by the following
n-dimensional analytic system, in Kalman form :

X = f(x,u) 2.1
Suppose a smooth feedack control law of the form:
=-k(x) 2.2)

renders a desired closed loop behavior for the given system.

Consider now an auxiliary output function y which
measures the "implementation” emor of the above feedback
controller:

y = u+ k(x) 2.3)

One may then impose the condition of zeroing, in finite time,
the auxiliary output function y by imposing on its evolution the
following autonomous discontinuous dynamics:

y =W siga(y)

Computing the required contro] signal u one obtains, after
using (2.1) (2.2) and (2.4):

(2.4)

(%;1 £(x,u) + dd% —W sign[u + k(x)] @2.5) -

which may be viewed as a first order, time-varying, ordinary

differential equation for u, with discontinuous right hand side :

du - -[%E] £(x,u) =W sign[u + k(x)] 2.6)

dt

The ideal slidin
input-dependent manifol

mode bchavior, obtained on the
y =u+ k(x) =0, is represented by the

- desired closed loop system (2.1), (2.2).

The control input discontinuies associated to the sliding mode



control scheme would be now adscribed to the first time derivative
of the control input. Hence, the input u docs not exhibit the
traditional bang-bang chattering associated to static sliding modes.
The dynamical discontinuous fecdback control scheme represented
by (2.6) is depicted in figure 1. Figurc 2 shows a reinterpretation
of (2.6) by acfscribing the feedback integrator to each feedback

path. This clearly explains why the proposed dynamical scheme is

decmed to be robust with respect to fecdback input errors.

We illustrate the above developments by means of a simple
first order mechanical system example in which a static
discontinuons feedback controller is not technically convenient and
the above dynamical discontinuous fecdback alternative is secn to
be specially advantageous. .

Example, (Dynamical sliding mode control of a pressure tank-

system).

Consider a steam tank with controlled charge, operating
under subcritical flow conditions (see Keckman, 1988). The
system is described by the following first order controlled ordinary -

differential equation:
dP . _ Rz {P4(P-P,| +R™ )
it v KoAgYPo(P-Po} +yu @7

where P is the preasure of the steam inside the tank, which is to be
regulated to an equilibrium value P(U) depending on the constant
value U of the flow rate u, acting as a control variable. R is the gas
constant, © is the temperature, assumed to be constant throughout
( i.e., the process is assumed to be isothermal). Py is the
downstream pressure, which is also assumed to be constant. V is
the volume of the tank and A is the constant cross-sectional area
through which the gas flows, while Kq is a constant associated to
. the valve and gas characteristics. For a given constant input flow
rate U the corresponding equilibrium pressure P(U) is, simply
given by: &

5 _ uU?
PU)=Po+ —~ - - (2.8)

(]
The assumption regarding a subcritical flow condition
roughly implies that P < 2 Py. Hence, under equilibrium
conditions, it must also be true that:

=Vl <P & U< PKeA 2.9)
K3AgPo
A sliding mode controller is easily designed by considering

as an output of (2.7) the pressure error: y = P -P(U). Imposing on
y the discontinuous dynamics in (2.4), one obtains:

= - W V-sign [-P(U)] + KoAoVPolP-Po}  (2.10)

Simulations of the controlled response of (2.7), (2.10) are”

. shown in figure 3. The tank pressure and the control input

trajectory are portrayed in this figure. The excesive chattering

appearing in the input trajectory makes the approach rather
impractical.

It is easy to sec that the following continuous feedback
controller achieves exact linearization of the tank pressure dynamics
with asymptotically stable response toward the equilibrium value
P(U).

u=- RY; ALP - PUY+ KoAgYPo(P-Po) (2.11)

where A is a positive design constant. Indced, substitution of
(2.11) into (2.7) leads to:

dP - a[p-
@ A[P-P(U)]
Consider now the auxiliary output function given by :
y = u+ZeMP-PU) - KoAVPoP-Po)  (2.13)

Imposing on the new output function y the dynamics in
’(2.4), onc obtains the following dynamical sliding mode controller:

@12

ﬁ+ku——K9A°p°ﬁ Rt—u =

Hrdo-r] ¥
242 - -
- E.ngpo- %} + ;\,KQA()JE)(P-PO)

@),
~Wsign|u+ AP~ POUYI - KoAoVPolP-Po))

Simulations of the controlled response of (2.7), (2.14) are

" shown in figure 4. In this figure the tank pressure is shown to

asymptotically converge to the desired equilibrium while the

smoothed (non-chattering) control input trajectory also converges
to the prescribed constant flow rate.

3. A DIFFERENTIAL ALGEBRAIC APPROACH TO.
SLIDING MODE CONTROL OF NONLINEAR
SYSTEMS

3.1 Nonlinear Controlled Dynamics and Sliding Regimes

In this section we closely follow Fliess's differential
algebraic approach to systems dynamics (see Fliess 1986,1988,
1989a, 1989b,1989¢,1990a, 1990b) for the basic definitions and
results.

Definition 3.1 Consider an ordinary differential field k of
characteristic zero. A system is any finitely generated differential
field extension of k, denoted by K/k.

Let u be a transcendence element of the system K/k. uis

1then a differential indeterminate representing the input to the

“system. By itself, u is then assumed not to satisfy any algebraic
“differential equation with coefficients in k. We say that u qualifies
as a differential transcendence element , or basis , of K/k.

The field extension k<u> denotes the smallest differential
field containing, both, k and u. The field extension k<u> is also
referred to as the field generated by k and u.

Definition 3.2 A dynamics is defined as a finitely generated
differentially algebraic extension K/ka of the differential field
kan,

Itis well known thatif uis a differential transcendence basis *
of K/k then, the extension K/k<u> is differentially algebraic.

Proposition 3.3 Suppose x = (X1,X3,....X,) is a nondifferential’
.transcendence basis of K/k«, then, the derivatives dx/dt
(i=1,...,n) are kn»-algebraically dependent on the components of
X .

" Proof: immediate. v "

One of the consequence of the last result, drawn by Fliess'
(1990a), is that a more general and natural representation of
nonlinear systems requires implicit algebraic differential equations.
Indeed, from the above proposition, it follows that there exist
exactly n polynomial differential equations with coefficients in k, of
Ehe forn:

Pi(x,x,uti, - ,’“(a)) =0;i=l;--n @3.1).

Jmplicitly describing the controlled dynamics.
K]

i It has been shown by Fliess and Hassler (1990) that such

implicit representations are not entirely unusual in physical -
examples. The more traditional form of the state equations, known

as normal form is recovered, in a local fashion, under the

assumption that such polynomials locally satisfy the following rank

-condition :

9Py

0 o0
oxX,
rank Pt =n
oP
AL
d%y
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The time derivatives of the x;'s may then be, locally. solved
for as:

Xi = pi(X, 00, @) =0;i= 1,0 3.2)

The representation (3.2) is now known as the generalized
state representation of a nonlinear dynamics.

Consider a (nonlinear) dynamics K/k<u>. Let, furthermore, -
§ = (§1se.o8n) be a non-differential transcendence baisis for K,

ie., the (non-differential) transcendence degree of K/k<u> is,
then, assumed to be n.

Definition 3,4 A first order sliding surface is any element o of the
dynamics K/k<u> such that its time derivative da/dt is

k<u>-algebraically dependent on §. That is, there exists a_

polynomual S over k such that :

85,8, v, 4,..,.u®) =0 3.3)
Remark A more traditional definition of sliding surface coordinate
function is related to the fact that no input signals, nor any of its
time derivatives, were customarily allowe
expression defining such a sliding surface candidate. In this
unnecessarily restricted sense, the shding surface was allowed to
be an (algebraic) function of the state components only. Moréover,
for systems in "Kalman form”, described by a state vector &, the
time derivative of the sliding surface was required to be
algebraically dependent only on & and u. Hence, all the resulting

sliding mode controllers were, necessarily, of static nature. The

differential algebraic approach naturally points to the possibilities of
dynamical sliding mode controllers, specially in nonlinear systems
where elimination of input derivatives may not be possible at all
(see Flicss et al 1991, for a physical example of this nature).

One generalizes the above definition by considering "higher -

order” sliding surface candidates.

Definition 3.5 A p-th order sliding surface is any element ¢ of the
dynamics K/k<u> such that its p-th order time derivative is
k<u>-algebraically dependent on ¢. That is, there exists a
polynomial § over k such that :

§ (0P, ¢, v, u,...,uM) =0 3.4)

This definition gives rise to the possibilities of a smoothed
asymptotic approach to the zero "level set * of the sliding surface ¢
through a discontinuous feedback policy. The implications will be
explored in detail in Section 3.3, below. Notice that the integer p is
not necessarily the first higher order time derivative of o for which
a k<u>- algebraic dependence on § may be establised. Thus, a p-th
order sliding surface candidate might have also qualified as a lower
order sliding surface candidate.

Suppose ¢ is.a first order sliding surface candidate.
Imposing on o a discontinuous sliding dynamics of the form:

6=-Wsign(0) (3.6)

-

one obtains, from (3.3), an implicit dynamical sliding mode

controller given by :
S(-W sign(o), §, u, u,..u®) =0 3.0

which is to be viewed as an implicit, time-varying, discontinous
ordinary differential equation for the control input u.

The two "structures” associated to the underlying variable -
structure control system are represented by the pair of implicit

dynamical controllers:

SW, &, u,b,..,uP)=0; for 6>0
S(-W, §, u,1,...,ulP) =0 ; foro<0

cach one valid, respectively, on one of the "regions” : ¢> 0 and ¢
< 0. Precisely on the condition o= 0 neither one of the control
structures is valid.

; We formally define the equivalent control dynamics as the

dynamical state feedback control law obtained by letting da/dt
become zero in (3.3), and considering the resulting implicit
differential equation for u :

to be part of the '

(3.8)°

$(0, &, ugq, ling.--ugp =0 B9
Suppose now that in (3.3) 35/d(ds/d) # 0, then one locally ,
obtains:

6 =5(%, u, ..., u®) (3.10),
and the corresponding dynamic sliding mode controller, complying
with (3.6), is given by:

s(¢, u, &...,uP)) = -W sign ( 6) 3.11)

If, furthermore, ds/du(P) is non zero, one locally obtains an

explicit time-varying state space representation for the dynamical
sliding mode controller (3.11), in the form:

ﬁ1=u2

=0 (3.12)
ﬁ.g = 8(uy .+ +,up, §, Wsign(0))
u=u;

All discontinuities arising from the bang-bang control policy
are seen to be confined to the highest derivative of the control input
through the nonlinear function 8. The output u of the dynamical
controller is clearly the outcome of p integrations perfonmed on
such discontinuous time derivative of u and, for this reason, the
signal u, emerging from the controller, is sufficiently smoothed
out. :

" 3.2 Dynamical sliding regimes based on Fliess's Generalized

Controller Canonical Form,

The following theorem plays a fundamental role in the study
of systems dynamics from the differential algebraic approach

v (Fliess, 1990a). .
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Theorem 3.6 Let K/k<u> be a dynamics. Then, there exists an
element & e K such that K = k<u,£> i.e., such that K coincides
with the smallest field generated by the indeterminates u and & .

The (nondifferential) transcendence degree n of K/k<u> is
the smallest integer n such that &) is k<u»>-algebraically dependent
on &,dé/dt,...., dn-Dgdia-1), We let qp = &, qp = d&/dt ,....qq =
d(n-Dg/di(m-1), Tt follows that q =(qy.....q,) also qualifies as a.
(non-differential) transcendence basis of K/k<w. One, hence,
obtains a nonlinear generalization of the controller canonical form,
known as the Global Generalized Controller Canonical Form
(GGCCF) :

dq =a
Qu=e

—‘:i =

32=B

g (3.13)
-1 =

dtq"l qn

C(G,q,0,U,...,0(@).= 0

where C is a polynomial with coefficients in k. If one can locally
solve for the time derivative of q;, in the last equation, one locally
obtains an explicit system of first order differential equations,
known as the Local Generalized Controller Canonical Form
(LGCCF): .

=

4o =

=D
: 3.14)

_d:' =
dt Gn-1 = Gn )
(% qn = c(q,u, 4, i,...,u®)

Remark We assume throughout that « 2 1. The case @ = 0
corresponds to that of exactly linearizable systems under state
coordinate transformations and static state feedback. Onc may still -
obtain the same smoothing effect of the dynamical sliding mode .
controllers we propose in this article by considering a suitable
prolongation of the input space. This is accomplished by :
succesively considering the "extended system" ( sec Nijmeijer and



Van der Schaft, l§90 ) of the original one, and proceeding to use

the same differential primitive element yielding the Generalized,
Controller Canonical Form of the given smaller dimensional
system. [ ]

The preceeding general results on canonical forms for
nonlincar systems have an immediate consequence in the definition
of sliding surfaces for stabilization and tracking problems in
nonlinear systems.

Consider the following sliding surface coordinate function
expressed in the generalized phase coordinates q previously defined
G =¢q+...4C.19n-11Gn (315).
where the scalar coefficients c; (i=1,...,n-1) are chosen in such a’
manner that the following polynomial, p(), in the complex
variable A, is Hurwitz:
pAM)=cp +ch 4.+ cn_lln'z 4+t (3.16)
Imposing on the sliding surface coordinate function o the
discontinuous dynamics:

& =-Wsign(o) 3.1
then, the trajectories of o are secn to exhibit, in finite time T given
by T = W-1| 6(0) |, a sliding regime on o= 0. Substituting on
(3.17) the expression (3.15) for o, and using (3.14), one obtains,
after some straightforward algebraic manipulations, the following
dynamical implicit sliding mode controller :

c(q,u,,i,... u®) = ~¢)qr~...~¢p.1q,

; (3.18)
~Wsign[c1q+...4C5.1qn-1+qa]

Evidently, under ideal sliding conditions ¢ = 0, the variable
qq no longer qualifies as a state variable for the systém since it is
expressible as a linear combination of the remanining states and,
hence, q, is no longer a non-differcntially transcendental element of
the field extension K. The ideal (autonomous) closed loop
dynamics may then be expressed in terms of a reduced
non-differential transcendence basis K/k which only includes the
remaining n-1 phase coordinates associated to the original
differential primitive element. This leads to the following ideal
sliding dynamics: :

da =
P a7

44, =
©=a
. 3.19).

. 4 Q] =C1qy -+ -

The characteristic polynomial of (3.19) is evidently given by
(3.16) and, hence, the (reduced) autonomous closed loop dynamics
is asymptotically stable to zero. Notice that by virtue of (3.15), the
condition 6 = 0, and the asymptotic stability of (3.19), that q,, also
tends in an asymptotically stable fashion to zero.

The equivalent control , denoted by ug is a yirtual feedback ’
control action achieving ideally smooth evolution of the system on
the constraining sliding surface o = 0, provided initial conditions
are precisely sct on such a switching surface. The equivalent
control is formally obtained from the condition do/dt = 0. After
some simple algebraic manipulations one obtains from: (3.15),
(3.18)and 6=0:

c(qupquipg. -+ uS) =

(3.20)
€1€5.195+H(C2Cn.1-C1)q2+

+++ +(€0.2C0-1 ~€n-3)40-2+(Cn-10n-1-Cn-2)Gn-1 |

Since q asymptotically converges to zero, the solutions of
the above time-varying implicit differential equation, describing the
evolution of the equivalent control, asymptotically approach the
solutions of the following autonomous implicit differential equation .

(O, s+, ul@dy =0 @21y

Equation (3.21) constitutes the zero dynamics (See Fliess,
1990b) associated to the problem of zeroing the differential
primitive element, considered now as an (auxiliary) output of the

system. Notice that (3.20) may also be regarded as the zero
dynamics associated with zeroing of the sliding surface coordinate .
function . If (3.21) locally asymptotically approaches a constant
equilibrium point u = U, then the system 1s said to be locally
minimum phase around such an equilibium point, otherwise the
system is said to be non-minimum phase. The equivalent control is,
thus, locally asymptotically stable to U, whenever the underlying
input-output system is minimum phase.

3.3 Higher order sliding regimes

In recent times some efforts have been devoted to
non-traditional smoothing of sliding regimes through the so called
“"higher order” sliding regimes (see Chang, 1991 for a second order
sliding mode controller example). The ideas behind "binary control
systems", as applied to variable structure control, are geard
towards obtaining asymptotic convergence towards the sliding
surface, in a manner that avoids control input chattering through
integration (See Emelyanov, 1987). These two develpments are

- also closely related to the differential algebraic approach presented

here. In the following paragraphs we explain how the same ideas
may be formally derived from differential algebra, in all generality.

Let o be a p-th order sliding surface candidate. i.e.

$(®, g, v, a,...,u0) =0 (3.22)

* for some polynomial function S. Let us assume that (3.22) may be

locally expressed as:

ol = 5 (&, v, u,..,uM) (3.23)

Let M be a positive constant. Moreover, let the set of
cocfficients { my,....mp.1} be such that the polynomial in the
complex variable A :

Q) =2+ mp M e mpA 4 my

is Hurwitz. The following dynamical implicit sliding mode
controller achieves an asymptotic approach te the zero level set of
the sliding surface o.

s(§, v, u,.,uM)=-mG-myo - ... - mp.lc(l*l)

-M sign {m 16+ m26 + ... + mp. 0P + o(P'l)] (3-24)

Since, generally spcaking, the time derivatives of o are;
k<u>-algebraically dependent on {, the right hand side of the
dynamical sliding mode controller (3.24) may be ultimately"
expressed in terms of the (time-varying) state components. ’

Remark A differential primitive element of the finitely generated:
dynamics K/k<u>, with (non-differential) transcendence degree n,
always qualifies as a candidate for an n-th order sliding regime. &

An additional possibility of creating higher order sliding
regimes is represented by the consideration of the input-sliding

“surface system as an input-output system.
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Consider the differential field extension k<u,o0>/k<u> as an
input-output system. Evidently since k<u,o> is finitely generated
over k<u>, then k<u,o> is differentially algebraic over k<u>. The
sliding surface candidate o satisfies, then, an implicit algebraic
differential equation with coefficients in k<u>. i.e.,

P(g, 6,---, 0¥, i, -+, uW) =0 (3.25)
We may rewrite such an implicit differential equation as the

following Global Generalized Observability Canonical Form
(GGOCF) (sec Fliess, 1988):

d’] =02
92=9 (3.26)

P(oy, .-, Oy, vy, -, ¥H) =0
¢g=0)

where: ¢ = di-lo/dti-! (i=1,2,...,v)

As before, an explicit Local Generalized Obscrvabililyi



Canonical Form (LGOCF) can be obtained for the elemcnt o
whenever oP/d(doy/dt)# 0 :

61 =02

%2=0 (.27

Gy = P(S1, -+, Ov, 0, ooy ul)
G =0
One takes a sliding surface candidate as any arbitrary

(algebraic) function of o and its time derivatives, up to v-1-st order.
For obvious reasons, the most convenient type of function is

represented by a stabilizing linear combination of ¢ and its tine -

derivatives.

§ =m0} + My02 + - +My.1Oy. | + Oy (3.28)

A first-order sliding motion is then 1mposcd on such alinear

combination of generahzed "phase variables”, by means of the
discontinuous sliding mode dynamics:

§ = -Msign(s) ; M>0" (3.29)

This results in the followmg implicit dynamical higher order
sliding mbde controller:

p(o1, ..., Ov, 0, .. uB) = ~m02—...~m,.,0y

=M sign[m 01 +...4+my.0p.1+0v]

(3.30)

As previously discussed, s goes to zero in finite time and,
provided the coefficients in (3.28) are properly chosen, an ideally
asymptotically stable motion can be then obtained for o, as it is
ideally governed by the following autonomous linear dynamics:

=0y
62:03

Gp.1= -my0i-my02----- My.10p- 1
¢=0]

3.4 Sliding regimes and the controllability of nonlinear systems

The differentially algebraic closure of the ground field k in

the dynamics K is defined as the differential field x, where K 2 x 2
k, consisting of the elements of K which are differentially algebraic
over k. The field k is differentially algebraically closed if, and only
if,x=k

The following definition is taken from Fliess (1991) (sce
also Pormnmaret, 1988):

. Definition 3.14 The dynamics K/k<u> is said to be controllable if,
and only if, the groud ficld k is differcntially algebraically closed in
K.

Controllability implies, then, that any element of K is
necessarily influenced by the input u, since such an element
satisfies a differential equation which is not indepcndent of u and
"of, possibly, some of its time derivatives.

Proposition 3.15 A higher order sliding regime can be created on
‘any element o of the dynamics K/k<u> if, and only if, K/k<u>is
controllable,

-Proof sufficiency is obvious from the fact that controllability .

“implies that ¢ satisfies a differential equation with coefficients in
“k<u>. For the necessity of the condition, suppose, contrary to
what is asserted, that K/k<u> is not controllable and yet a higher

order sliding regime can be crcated on any element of the °
differential field extension K/k<u>. Since k is not differentially -
algebraically closcd, then, there are elements in K, which belong to .

a differential field x containing k, which satisfy differential
equations with coefficients found exclusively in k. Clearly, these
elements are not related to the control input u through differential

.equations. It follows that a higher order sliding regime cannot bc :

created on such clements. A contradiction is established.

In this more relaxed notion of a higher order sliding regime,
;one may say that a sliding regime can be created on any element of
o .

@331y

. state-space descnphon via circuit examplcs

the dynamics of the system, if, and only if, the system is
controllable. This characterization of sliding mode existence
through controlability is a direct consequence of the diffcrential
algebraic approach.

4. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

The use of the differential algebraic methods provides a firm
theoretical basis to sliding mode control of nonlinear systems. The
-results arc seen to point towards potential practical implications.
‘More general classes of sliding surfaces, which include the
-presence of inputs and, possibly, their time derivatives, were
Shown to naturally allow for chattering-free sliding mode
controllers of dynamical nature. The theoretical simplicity, and
conceptual advantages, stemming from the differential algebraic
approach, render new possibilities to the broader area of-
discontinous feedback control in general. Extensions of the theory,
_and its implications, to other classes of discontinuous feedback
‘controlled systems, such as pulse-width-modulated control
strategies, are entirely possible (sec Sira-Ramirez, 1992¢). The less
sexplored pulse-frequency-modulated control techniques may be
‘shown to also benefit from this new approach (Sira-Ramirez,
~1992f). For other classes of systems, such as infinite dimensional,
discrete time and differential-difference systems, the extensions of
the sliding mode control theory remain largely unexplored, from
this new viewpoint.

It has been shown, in a most elegant manner, by Fliess and
Messager (1991), that non-minimum phase linear systems can be
asymptotically stabilized using dynamical precompensators in
combination with sliding mode controllers. Such result could be
extended to the nonlincar systems case with, possibly, some
significant additional efforts. This topic, as well as extensions of
the theory to nonlinear multivariable sliding systems, deserve some
attention in the future.
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Figure 1. Dynamical Sliding mode controller enforcing a known
smooth feedback law.
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Figure 2. Reinterpretation of dynamical Sliding mode controller
enforcing a known smooth feedback law.

Flow rate (control)

:Figure 3. Simulation of statically variable structure controlled
: pressure tank. :

Figure 4. Simulation of dynamically variable structure controlled
pressure tank.
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