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Abstract In this article, a dynamical multivariable .
discontinuous feedback control strategy of the sliding mode
type is proposed for the altitude stabilization of a nonlinear
helicopter model in vertical flight. While retaining the basic
robustness features associated to sliding mode control

" policies. the proposed approach also results in smoothed out
(i.e., non-chattering) input trajectories and controiled state
variable responses.

1. INTRODUCTION

Using techniques derived from the differential
ulgebraic approach to control theory (see Fliess {1]-{2] ).
dynamical sliding mode control of nonlinear systems has
been recently introduced for the chattering-free variable
structure control regulation of nonlinear single-input single-
output systems (see Sira-Ramirez {3]-[5) and, for scminal
ideas, see Fliess und Messager {6] ). In Sira-Ramirez et al
[7], the technique was shown to possess particularly
desirable features for the robust solution of stabilization and
tracking problems defined on mechanical systems, such as
flexible joint robotic manipulators.

In this paper we propose a dynamical sliding mode
controller for the attitude control of a multivariable nonlinear
helicopter under model. The main rotor collective pitch and
the engine throttle input were used as control variables for
height stabilization around a desired constant reference. The
noniinear dynamical system equations, which describe the
vertical motions of the helicopter, were identified from an
experimental tlight control facility which consists of an X-
Cell 50 radio-controlled model helicopter, powered by a 0.5
ind two-cycle Webra gasoline engine (see Pallet et al 8] ).
A state coordinate transformation of the nonlinear system
dynamics into Isidori's Normal Canonical Form is shown to
yieid a. decouplable. exactly linearizable multivariable
system. On such a transformed system. static sliding mode
control techniques should not be directly applied, as they
result in undesirable chattering of the collective pitch and
engine throttle inputs. Input chattering would also result in
unnecessary excitation of unmodelled dynamics and high
frequency vibrations of the airframe and propulsion
systems. The advantageous robustness features of the
sliding mode control approach are made compatible with the
mechanical limitations of the system through an extended
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system model (see Nijmeijer and Van der Schaft [9] ) on
which an auxiliary static sliding mode controller design is
performed via well-known techniques (Sira-Ramirez [10}).
The obtained static design is then re-interpreted, in terms of
the original control input variables, as a dynamical sliding
mode feedback controiler. The chattering state responses
and chattering inputs trajectories, otherwise characteristic of
sliding mode control techniques, are thus entirely confined
to the state space of the dynamic controller and effectively
eliminated from the system state space. and control inputs.
As a result, the generated input signal and the corresponding
state trajectory response are sufficiently smoothed by the
inherent integration.

Modern linear controller design methodologies have
been used in the past for helicopter altitude regulation
problems. Such techniques include Ho, optimal control,
linear quadratic regulator design and eigenvalue-cigenvector
assignment techniques. Reviews of such approaches are
contained in Garrad and Low {11] and in Mannes er al {12}
where the reader is referred for more thorough details on
results. The work of Pallet er al {13} served as the basis for
our understanding of the helicopter model.

Section 2 presents a nontinear helicopter model and
the corresponding dynamical sliding mode controiler design
for altitude and the rotor pitch angle regulation. In this
section . computer generated simulations are presented and
discussed. Section 3 collects the ‘conclusions and
suggestions for further research.

2. DYNAMICAL SLIDING MODE CONTROL
OF AN HELICOPTER IN VERTICAL FLIGHT.

2.1 The helicopter model (8]

We consider a miniature helicopter mounted on a
stand (see Figure 1) which places it sufficiently high above
the ground (over one rotor biade diameter). The stand is
equipped with conveniently located pistons which offset the
weight of the stand while the helicopter is in
motion. Thefollowing set of differential equations describes
the vertical motions of the X-Ceil 50 model miniature
helicopter:

= Ki(14Ge)Cro? -g-Koa-Kaz™Ky  (2.1)
where:
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The above variables are defined as:

z : height above the ground (m).

®: rotational speed of the rotor blades (rad/s).

g : gravitational force (m/sz).

3c: collective pitch angle of the rotor blades (rad).
uh, ¢ input to the throttle.

ug. : input to the collective servomechanisms (rad).

The first term in equation (2.1) is the main thrust
term, taken to be proportional to the square of the rotational
speed of the rotor blades, w, and dependent also upon the
ground effect term, Gegf(z), which we will assume to be
zero for sufficiently high initial conditions of the altitude
variable. A damping term is present in equation (2.1) just to
account for the piston mounted on the stand. Equation (2.1)
also includes parasitic and constant drag forces as third and
fourth terms respectively. Equation (2.2) is a modification
of that found in Johnson [14] and it relates the thrust
constant Cr to the collective pitch angle 8¢. The two stroke
engine, and its effect on the rotational velocity of the rotor
blades, is modelled by equation (2.3). This equation
includes a damping term, two air foil drag losses terms and
a linear approximation of the combustion engine, as well as
the throttie servo input, uy, to the rotational speed, .
Finally, equation (2.4) represents the collective pitch servo
response to the input ug.. The first terms of (2.4) represent
a linear approximation of the relationship between the servo
input and the resulting collective pitch in steady state. The
last two terms represent the damping of the servo system
due to the servo motor and linkages and a torque drag term.

Nominal values of the parameters, taken from Pallet
et al (8], are given as :

K; =0.25m, K; = 0.10s°}, K3 = 0.1 m"1, K4 = 7.86 m/s2,
Ks = 0.70 51, Kg = 0.0028, K; = 0.005, Kg = - 0.1088s2,
Ko = -13.925'2, K19 = 800.00 s°2, K{; = 65.00s°1,

Ki2=0.1, K¢p = 0.03259 K¢, = 0.061456.

Model (2.1)-(2.4) may be written in terms of a state
variable representation as follows:

% = f(x) + g1(x)uy + g2(x)uz

y=Cx 2.5)

where:
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The paramcters a; through a5 are given by:

a1 =531 x 104, 2 = 1.5364 x 102,
a3=2.82x 107, a4 = 1.632 x 10’3
as =-Ky, a5 =-Kz, a7 = -g-Kyg,
ag = -Ks, a9 = -K¢ , 210 = -K¢
ay; = Ko , 212 = 0.5436 K0, 213 = -Kyo,
ag =-Kp2 , a5 =-Kyy

The "extended” system equations for the helicopter
model (2.5) are of the form :

X = f(x) + g1(x)u; + g2(x)u2
U = vy
l:lz =V
y=Cx

(2.6)

The following (input-dependent) invertible state
coordinate transformation:
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take the extended system (2.6) into Isidori's normal
canonical form :
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Transformation (2.8),(2.9) is everywhere invertible,
except on the set of state values satisfying the condition :

By (31"' a8y Vag+a, Gy )= 0. The rotor blade speed
@ = x3 = Py is never zero while the helicopter is in flight. It

is easy to see that since a3 = a2 the only physically
meaningful solution of this realtion happens when the

collective pitch {31 is zero. From a practical standpoint such
a situation seldom happens since the collective pitch takes a
nominal nonzero value (typically, 7 to 8 degrees) which is
controlled, throughout the maneuver, to the same, or
higher, operating point. However, if it is absolutely
required to cross the zero collective pitch condition, in a
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compiex altitude maneuver, then the method exposed here
fails, and large discontinuities have to be imposed,
momentarily, on the control input. This topic is not
addressed here in any further detail (see Fliess et al [15]
for related details ).

; ical sliding m ntroller design f

Given the mechanical nature of the helicopter system
being controiled, static sliding mode controller design
should be avoided, as its actions resuit in chattering of the
throttle input and chattering collective pitch servomechansm
input. The behavior of the system would be sufficiently
smooth but the actuators will unnecessarily suffer the effects
of excesive vibratory (bang-bang type) commands. Thus, a
dynamical variable structure control design procedure will
be applied to the helicopter model by designing a static
variable structure controller on the extended helicopter
model. For this, we define the sliding surface coordinate
functions as:

01 (§) = 81a + 21383 + 1282 + a1 €1a-y10)
02 (§) = §a3 + 022822 + @21(821-¥20) .11

where yq is the desired constant height to which the
helicopter is to be driven while achieving a stable hovering.
The desired value y,q of the collective pitch angle is usually
chosen as a nominal value at which liftoff and hovering is
obtained.

If a sliding regime exists on the zero level sets of the
sliding surface coordinate functions, oy and o, , then the
ideal sliding dynamics for each input-output decoupied
subsystem is asymptoticaily stable toward the desired
equilibrium condition. The output signals y;, y, are then
governed by the following asymptotically stable, decoupled,
autonomous, time-invariant linear differential equations :

¥, + @nsyi+ayi+ aulyi-yia) = 0
" . (2.12)
Ya+azayz + an(y2-y2) =0

The expressions for the dynamical controllers are
obtained by forcing the surface coordinate functions ¢y and
gy to satisfy the following autonomous sliding mode
dynamics:

o1 =-pior +Wisgnay] |

. (2.13)
02 = -pa (02 + Wy sgn 2]

Using (2.11) and (2.13), and solving for the first
order derivatives of the original control vector components,
one obains a set of two time-varying, first order. nonlinear
discontinuous differential equations for the multivariable
controller accomplishing output stabilization around the
desired equilibrium condition. Such an expression is quite
img;lved and may be found in all detail in Sira-Ramirez et a/
(16]).

2,3 Simulation Results

Simulations were performed for the dynamical
variable structure feedback controllers proposed above.
From a hovering equilibrium condition, located at y; = 0.75
mt, with a nominal collective pitch of y; = 0.125 rad, the
helicopter was required to rise to a hight of 1.25m while
simuitaneously rising the collective pitch from 0.125 to a

new nominal value of 0.20 to ease the throttle magnitude
and at the same time obtain adequate lift force. The



generated input trajectories for the dynamical variable
structure controller are quite smooth with unnoticeable
chattering while exhibiting the same qualitative response for
the output vector trajectories. The dynamical sliding mode
controlied responses for the output variables are shown in
figure 2. Figure 3 shows the dynamically generated control
input trajectories for uy and us. The values of 1, Wand a's
for the dynamical sliding mode controller were setto be :

(=2, =30, 0,=25, a;=8
Ly= 10, W, =2 0y, =20, @py =9

3. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

A dynamical variabie structure controller scheme has
been presented which achieves robust asymptotic output
stabilization for nonlinear muitivariable systems which are
exactly linearizable. The dynamical feedback controller
generates smoothed control inputs to the given sysiem and
constrains all undesirable chamening effects 1o the state space
of the controiler, thus effectively eliminating the uncesirable
effects of high frequency bang-bang signals on the system
variables and inputs. The proposed controller requires the
on-line integration of a nonlinear discontinuous system of
differential equations. Such integration offers no particular
difficulty for the impiementation over those commonly
encountered in, say, state observers. Dvnamical sliding
mode control opens up the possibilities of having charttering-
free controiled responses in a variety of dynamical
controlled systems where. traditionally, the variabie
structure control approach encountered natural limitations
for its implernentation due unmodeiled dynamics excitation.
Thus, through system extension, one may directly apply
this robust control technique to mechanical systems in
general.

Applications of the proposed dynamical feedback
variable structure regulator were carried out in this amicle for
a nen-trivial helicopter example comprising 5 states and 2
inputs. The simulation results are quite encouraging and
work 15 presently under way leading to actual
implementation in the laboratory facility of the Real Time
Robot Control Systems Laboratory at Purdue University.

As topics for further research, dynamical sliding
moede control strategies can be extended to nonlinear
muitivariable systems of the non-decouplable class.
Adaptive regulation techniques for cases in which
parameter uncertainty is present both at the plant, and at the
sliding surface, is being presently pursued.
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FIGURES
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Figure 1. Miniature Helicopter and Flight Stand.
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1 Figure 3.Control Input Trajectories of Dynamic
- Muitivariable Sliding Mode Control Helicopter .
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Figure 2. Dynamical Multivariable Sliding Mode Controlled
Output Responses for Helicopter Altinuie Stabilization
Problem.
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