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Abstract

In this article a dynamical discontinuous feedback
control strategy, of the sliding mode type, is pro-
posed for robust predicitive control schemes based
on system inversion.

1 Introduction

The Model Based Predictive Control technique has
been the topic: of sustained research eversince first
introduced by Richalet et al {1], in 1978. The tech-
nique has been further developed by Clark et al [2],
Bitmead et al [3], and by Ronald and Stoeterboek
[4). Extensions to the nonlinear case are due to Abu
el Ata et al [5).

In this article we propose an approach that uses
an advantageous combination of dynamical sliding
mode control (Sira-Ramirez [6]) and input-output
system inversion (Fliess [7]). These two techniques
naturally blend together to yield a robust solution
to the nonlinear output tracking problem associated
to any predictive control scheme defined within a
prespecified prediction interval.

2 Robust Predictive Control
via a Sliding Mode Strategy
Consider a nonlinear n-dimensional single-input

single-output dynamical system, expressed in Gen-
eralized Observability Canocnical Form [7]:
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1.7,' Nig1 i:l,...,n-l
= elmu,t,...,u®) v
y = m (21

where the scalar signal function v < N represents
bounded external perturbation signals and an assess-
ment of possible modeling errors. We assume a > 0.
Let yr(t) be a prescribed reference output function,
assumed to be sufficiently smooth and defined over
a given prediction interval {0, 7'p]. Such an interval
will be determined below.

Define a tracking error function e(t) as e(t) = y(t)—
yr(t) and an error vector e = col (ey,ez,...,¢,).
We then have :

é = e i=1,...,n-1
én = c(e+&r(t),u, ﬁ,...,u("’))—yg')(t)+u
e = ¢ (22)

with €g() = col (yr(8),32°(®),. .-, 45V (1)).

A (desired) system output tracking error dynamics
is prescribed on [0, T'p) by means of a reduced order,
asymptotically stable, linear dynamics,

é = ey i=1...n-2
bl = —Mp_jeq_y—---—me
e = e (23)

with a suitably prescribed set of real (stable) coeffi-
cients {m,,...,m,_1}. We denote by u the small-
est, in absolute value, of the real parts of the (sta-
ble) eigenvalues associated to (2.3). This parameter
is used in the computation of the prediction interval
as indicated below.



We also define a sliding surface coordinate function
as the auxiliary output function

n-1
w=en+ Z mje; (24)
i=1

Note that if w is driven to zero, in finite time, by
means of a suitable control action, then the desired
error dynamics, specified in (2.3), is accomplished.
An implicit dynamical discontinuous controller, in-
ducing a robust sliding motion on w = 0, is immedi-
ately found from the above equations as

c(én -Fe,u,d,...,u(")) =

) n-1 . n-1 ,.
yg‘) - Z m;eipy — W sign (en + E mieu‘) (2'5)

t=1 =1

The above controller determines the following evo-
lution of the auxiliary output function w:

w=v—Wsignw (2.6)

For sufficiently high values of W, the controlled val-
ues of w go to zero in finite time in spite of the
bounded values of v. A sliding regime can, thus, be
indefinitely sustained on w = 0.

After convergence to zero of the output tracking er-
ror, the dynamical controller exhibits the following
remaining dynamics :

C(fn,u,ﬁ,...,u(a)) = yg‘) (27)

It is assumed that this nonlinear time-varying dy-
namics is stable for the given output reference func-
tion yr(t). The dynamics (2.7) is evidently coinci-
dent with the zero dynamics whenever yg(t) = 0. In
such cases the assumption implies the given system
is minimum phase.

When the proposed predictive dynamical discontinu-
ous controller, is used on the actual system, one may
generally obtain, at the end of the prediction hori-
zon, a nonzero value for the sliding surface. This
value is evidently a function of the model mismatch
and of the various unmodelled uncertainties affect-
ing the system. The predictive control technique
proposes a number of procedures for obtaining an
error improvement for the next prediction interval
[Ty, "] (see [5).

A reasonable choice for the setting of the new pre-
diction horizon [T'p, T'p] may be devised as:

) 2
= @) 2 28
14 W~N u ( )

i.e. the new prediction interval is comprised of the
predicted reaching time to the sliding surface, w = 0,
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. computed from the previously obtained sliding sur-

face value, plus twice the slower time constant of the
impossed linear error dynamics. This guarantees, at
the end of the new prediction horizon, a theoretical
decrease of the slowest tracking error mode to about
13 % of its initial value at the hitting of the newly
proposed sliding surface.

3 Conclusions

In this article, a model based predictive control
scheme has been proposed which combines the ad-
vantages of sliding mode control robustness, and
its traditional high performance features, with the
conceptual simplicity of nonlinear system inversion.
This combination efficiently deals with the .@ssoci-
ated output tracking problem present in every pre-
dictive feedback control scheme.
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