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Abstract

An advantageous combination of chattering—free
dynamical sliding mode control and the adaptive
backstepping technique is proposed for the regu-
lation of exactly linearizable systems, placeable in
parametric-pure feedback form and in paremetric-
strict feedback form.

1 Introduction

In recent times special attention has been devoted to
adaptive control of nonlinear parametric uncertain
systems which are nominally fully state, or input-
output, linearizable by state coordinate transforma-
tions and feedback (see Sastry and Isidori {1}, the
collection of articles in the volume edited by Koko-
tovic [2] and the work of Kanellakopoulos et al [3],
Kristic et al [6], etc). In all these works continu-
ous control laws are being proposed for the adaptive
stabilization of dynamical systems placeable in spe-
cial canonical forms. Some of the more recent such
canonical forms being addressed as parameteric pure
and parametric strict feedback forms ([3), [6]).
Sliding regimes are frequently used as a robust
discontinuous feedback control alternative which
replaces, to some extent, adaptive feedback con-
trollers. Discontinuous feedback control strategies
frequently act also as a high performance stabilizing
technique with great potential for practical imple-
mentation (sec Slotine and Li [4]). Sliding mode con-
trol naturally deals with parameteric uncertain sys-
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tems (see [4]) without need for establishing a paralle} -
process dealing with parameter updating, charcteris-
tic of all avilable adaptive feedback control schemes.
However, only under very special circumstances can
sliding mode control be truly regarded as an actual
substitute, or alternative, for adaptive feedback con-
trol. First of all, somewhat stringent structural con-
ditions, known as the matching conditions, related
to the structural properties of the parametric uncer-
tainties, must be precisely satisfied in order to obtain
a robust performance of the sliding mode controller
policy. Secondly, when the stabilizing sliding surface
itself contains unknown (but bounded) parameters,
the slidifig mode control scheme must be effectively
turned into an adaptive one. This last issue is partic-
ularly the prevailing case in dynamical sliding mode
control alternatives (see Sira-ramirez (7],(8]). The
procedure for synthesizing such an adaptive sliding
surface entitles producing an on line estimate of the
stabilizing switching surface and stringent assump-
tions on its local uniform stabilizing features (see
Sira-Ramirez et al [5]).

The use of dynamically generated sliding mode
control has been recently proposed as a means
of obtaining a smoother controlled response than
those achievable throuhg traditional discontinuous,
or variable structure, feedback regulation schemes (
see [7], [8]). All chattering is thus completely rele-
gated to the state space of the dynamical feedback
controller. As a consequence of this, a sufficiently
smooth control input signal is generated. It is this
particular smoothing feature that we would like to
retain while avoiding explicit sliding surface adapta-
tion and sliding surface error assessment. Bactstep-
ping techniques provide a natural and sufficiently



simple way to obtain a more direct sliding surface
adaptation procedure while avoiding the excessively
restrictive stabilizing features of the adaptive sliding
surface.

In this article it is shown, through the simplest
possible example, how to conveniently combine the
many useful features of adaptive backstepping tech-
niques and chattering—free dynamical sliding mode
control. The class of systems to which this proposal
applies is restricted to systems placeable in paramet-
ric pure feedback canonical form and also for those
transformable to parametric strict feedback canoni-
cal form (see Kristi¢ et al [6]). The backstepping
adaptive algorithm for the second class of systems
does not require overparametrization, a feature al-
ways present in the first class of systems.

In contradisctinction to existing adaptive slid-
ing mode control techniques ([4], [5]), the proposed
approach does not concern itself with convergence of
the estimated (adapted) sliding surface and switch-
ings take place on such an estimated surface quite
independently of its convergence, or not, to the nom-
inal sliding surface.

2 Sliding Regimes and Back-

stepping in Parametric Un-
certain Systems

Here we shall illustrate through a simple first or-
der example how to combine the idea of dynamical
sliding mode control and backstepping for the adap-
tive control of parametric uncertain systems which
are placeable in parametric pure feedback canonical
form (see [3]) or parametric strict feedback canonical
form (see citeKristic).. Some simulations will also be
shown that depict the performance of the proposed
adaptive controllers.

2.1 Adaptive sliding mode control
through backstepping for systems
in parametric—pure—form

Consider the parametric uncertain scalar system

& = u+ 02° (1)
where @ is assumed to be constant but unknown. A
static sliding mode controller may be readily pro-
posed as u = —k sign x for & > 0, where “sign”
stands for the signum function. It is clear that for
sufficiently high values of k a local sliding regime
can be created, in finite time, on z = 0 by means
of this simple control policy. Indeed, if the parame-
ter 6 satisfies the bounding constraint |#] < M then

1423

the region of initial states z(0), for which the ex-
istence of a sliding regime is guaranteed, may be
determined as |z(0)] < +/k/M. This implies that
in order to enlarge the region of initial conditions
for sliding mode existence, the design gain k must
be made significantly large, thus implying increased
chattering responses for the control variable z. Fig-
ure 1 depicts the simulated behaviour of the above
nonadaptive discontinuous feedback control strategy
for an (unknown) value of § = 1 and & = 05.
The controlled system trjectories become unstable
for |z(0)| > 0.707. They converge to zero otherwise.

A means of easing the need for large bang-
bang control input signals, while only guaranteeing
asymptotic convergence to zero of the regulated vari-
able z, can be obtained by devising a discontinuous
feedback control which also relies on a “tunnable”
estimate 6 of the unknown parameter 6. Such a con-
trol law is proposed as u = —k signz — 8z2. The
closed loop system is then given by

¢ = —ksignz+ (0~ 6)2® = —k sign = + ¢ (2)
where ¢ is the estimation error § — . A standard
Lyapunov stability analysis performed on the func-
tion V(z,¢) = 1z% + }¢? yields the following adap-
tation law .

f=2° (3)

The resulting time derivative of the Lyapunov func-
tion V(z,¢) is given by V = —k |z|, which means
that V is bounded and that, hence, z is absolutely
integrable. Since the derivative of z is also bounded
this guarantees asymptotic convergence of z to zero
for any positive value of the gain k, no matter how
small such a positive value is. However, if the sign of
the unknown parameter 8 is known a priori, and the
estimate 6 is consistent with such knowledge, then
the variable structure controller gain k can be safely
reduced down to values above a new lower bound,
represented by |M — 6|, while still having finite time
convergence to zero of the variable z. Figure 2
depicts the simulated trajectories for the adaptive
sliding-mode controlled state z, and the parameter
estimate trajectories 6(t). In the presented simula-
tions, the sliding mode controller gain was again set
to be k = 0.5 and the “true” value of the constant
parameter was set to be § = 1. Evidently the set
of initial states for which the controlled trajectories
converge to zero is now the entire real line. .
In the preceeding sliding mode-adaptive control
scheme, the contol input evidently exhibits a bang-
bang behavior which may be deemed as countereffec-.
tive in many instances, specially when the regulated
system is of the mechanical type. Our fundamental
objective in the next section will be to remove the
bang-bang nature of the control input by resorting



to system extension and letting the added integra-
tion attenuate the discontinuities associated the in-
put while relegating them to the first time derivative
of the input. The backstepping alternative will be
systematically used, in pursuing such an objective,
by prescribing (possibly overparametrized) parame-
ter update laws and discontinuous feedback control
strategies in an “interlaced” manner.
Consider now the eztended system

u+ 022 (4)

= v

where v is an auxiliary input representing the time
derivative of the original input u.

The above extended system is already in pure
parameter feedback form [3]. We now apply the first
few steps in the design procedure proposed in {3].
Let let él denote a first estimate of the unknown
parameter #. Define a new state variable, or input
dependent sliding surface coordinate function, s as
s = c1& + u+ 0,22 where ¢, is a positive design con-
stant. This choice result in the following expression
of the dynamics of the regulated system variable z

&= -—cyz+s+(0; —b6) 22 (5)

A Lyapunov function candidate of the form V; =
122+ 1(6) — 6,)? exhibits a time derivative given by

i —e1z? 425 + (6 — 61)(z% - 6y)
= ez’ x5+ ¢(zd — b)) (6)

We eliminate the term containing the parameter es-
timation error ¢ = § — @ by adopting the following
parameter update law

él = 1‘3 (7)

and let, temporarily, the Lyapunov function stand as
Vi = —c122+zs. The evolution of the adaptive slid-
ing surface s is computed directly from its definiton
and the system equations as

§=v+ (2,5,0)) +0 ¢ (,5,0,) (8)
where
¥ (2,8,61) = (1 +2612)(—c1z+5— b1z 25 (9)

and X R
¥ (z,8,01) = (c12® + 26,2%) (10)

The discontinuous feedback controller is obtained
from,

v=—1 (:c,s,él) -2 - ég s (:c,s,él) —ksigns
(11)

where 6, is a new estimate of the unknown param-
eter 6.

The new parameter update law is now assessed
from a stability analysis based on the new Lyapunov
function candidate

1 1 -
V2 = V1 + 582 + '2'(0 = 02)2 (12)

The time derivative of V,, computed along the
trayectories of the discontinuously controlled closed
loop systems is given by

—c1z® — k|s|+ (0~ 63)

(=64 + s 2% (1 + 26,2)) (13)

VG =

One then simply choses

D

2= s 2% (c; + 26,2) (14)
The resulting Lyapunov function derivative is
Vo= —c12® —kls| < 0 (15)

The obtained adaptive sliding mode controller is in-
deed a dynamical controller as it easily seen when it
is summarized in terms of the original control vari-
able u and its time derivative 4 = v .

—(cy + 26 z)u — 8
—b, (1 + 291x)z2
—z — k sign s

s = c12+u+(§122

1:3

s &% (c1 + 20, z) (16)
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-
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The simulated adaptive sliding mode controlled sys-
tem trajectories, shown in figures 3 and 4, were ob-
tained for £ = 0.5, ¢; = 2 and with the (unknown)
nominal parameter value # = 1. The state trajec-
tory is now quite smooth and asymptotically con-
verges to zero, while the control input u is no longer
bang-bang but continuous. The trajectories associ-
ated to the overparametrization estimation laws for
the unknow parameter 8. also show asymptotically
stable convergence features.

2.2 Adaptive sliding mode control
through backstepping for systems
in parametric—strict—-form

Consider again the extended system treated in the
previous section. This system is also in parametric-
strict-feedback form ([6]). We now proceed, follow-
ing the steps proposed in [6], to obtain a dynamical
adaptive sliding mode controller which only requires
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one adaptation law for the unknown parameter. De-
fine the adaptive sliding surface coordinate function
sexactly as before. Consider the Lyapunov function

_12 _1_ A\2
V=gt (0 -0) (17)

Then V is given by
V=c-czt+sz+(0- 0)(—0 +2%) (18)

3

Instead of choosing, as before, § = z3, we let the

term @ stand in the expression for V. The dynamics
for £ now obeys
&= —ciz+s4+(0-0)z? {19)

The dynamics for the aaptive sliding surface variable
s is obtained in a slightly different fashion to the
previous section. The difference is that we do not
vet define an adaptation law

§ = v+(cl+2élz)u
+6 2% + (cy + 20, z) 827 (20)
We now consider the Lyapunov function candidate

= (-0 —
Vo z? 4+ (0 )+ s

= V+ %sz (21)

The time derivative of Vs, along the solutions of the
system, is now given by
Vo = —ciz’+s [:z: +v+ (e + 2éx)u

022 + (¢, + 26z) 8 :::2]

+0 - b) [-0+4°] (22)
Choosing now
v = -—z—(c1+20z) (u+62?)
b2 —k sign s (23)
and . i
0=23+s2%(c; +20z) (24)

the time derivative of the Lyapunov function V3 sim-
ply becomes

Vo= —ciz?—kis| <0 (25)
and the states z and s converge to zero. A summary

of the adaptive controller in terms of the original
control variable u is as follows

@ = —z—(c; + 20z)(u+0z?)
—4;’:0:2 —ksign s
f = 2 + 522 (e + 26%)
s = u+4cz+ 022 (26)

Figure 5 depicts the closed loop behaviour of the dy-
namical adptive sliding mode controlled system ob-
tained without overparametrization. In this figure,
the controlled state variable z is shown along with
the smoothed dynamical controller output signal u.
Figure 6 shows the trajectory of the estimated pa-
rameter 6.

3 Conclusions

.

Sliding mode control can be advantageously com-
bined with adaptive backstepping techniques for the
regulation of parametric uncertain systems. The
combination allows to design either static discon-
tinuous feedback controllers, or dynamical discon-
tinuous controllers. The last option can be accom-
plished, usually, through straightforward state ex-
tention procedures, or by resorting to Fliess’ Gener-
alized Observability Canonical Forms [7]. The ad-
vantages reside in the substantially smoothed con-
troller output and reduction of the otherwise charac-
teristic “chattering” responses of the associated state
variables. The sliding mode controller also bestows
robustness with respect to the class of matched ex-
ternal additive perturbation inputs of the unknown
but bounded nature.
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Figure 1: Static sliding mode controlled state re-
sponses for first order parametrically uncertain sys-
tem.

Figure 2: Static adaptive sliding mode controlled re-
sponse for first order parametrically uncertain sys-
tem.
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Figure 3: Dynamical adaptive sliding mode con-
trolled state and smoothed input responses obtained
through overparametrized backstepping
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Figure 4: Parameter estimates evolution for dynami-
cal adaptive sliding mode controlled system obtained
through overparametrized backstepping
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Figure 5: Controlled state variable and smoothed
input response for dynamical adaptive sliding mode
controlled system, obtained through backstepping
without overparametrization
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Figure 6: Parameter estimate evolution for dy-
namical adaptive sliding mode controlled sys-
tem, obtained through backstepping without over-
parametrization
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