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Abstract

Module Theory is shown to generalize the traditional
results of Sliding Mode Control of linear systems,
while introducing new possibilities for applications.

The algebraic approach clearly shows that any desir-

able output dynamics, of arbitrary order, is synthe-
sizable by minimum phase sliding mode control, inde-
pendently of the order of the given plant and of any
structural conditions of the matching type. Clear re-
lations are also established with invertibility, nonmin-
imum phase situations, controllability and observabil-
ity
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1 Introduction

The theory and applications of Sliding Mode Con-
trol has received the contributions of many authors
during the years. Its timeliness can be measured by
the number of books entirely devoted the the subject
(Utkin [1], [2], Ttkis [3], Biihler [4] and Zinober [5]), or
hooks containing introductory chapters (Slotine and
Li [6)).

The theory of sliding regimes has recently un-
dergone a trend of developments relatéd to the dif-
ferential algebraic approach to control systems (see
Fliess and Messager [7], [8], and Sira-Ramirez [9], [10]

and [11]). This has resulted in robust dynamical slid-

ing mode controllers with smoothed chattering. How-
ever, the theoretical aspects related to the algebraic
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approach to sliding mode control for linear systems
has only been recently addressed by Fliess and Sira-
Ramirez in [12] from a module theoretic viewpoint.
In this article we address the algebraic approach
to sliding mode control of linear systems. We first
provide some background definitions of the relevant
topics in module theory and their relation to linear
systems theory. The reader is referred to Fliess [13],
and Fliess [14], for further details on the subject.

2 Background to Module The-
ory and Linear Systems

In this section we provide some background defini-
tions on Modules. The reader is referred to the book
by Adkins and Weintraub [17] for the proofs of fun-
damental issues. -

Definition 2.1 A ring (R,+,) is a set R with two
binary operations

+ : R — Rf(addition)
: R — R{(multiplication)

such that (R, +) is an abelian group with a zero. Mul-
tiplication and addition satisfy the usual properties of
associativily and distridutivity.

Example 2.2 The set 2Z of even integers is a ring
without an identity. The set of all polynomials
in an indeterminale = with coefficients in some
commutative field is also a ring.

Here we shall be dealing only with commutative rings
with identity.
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Definition 2.3 Let R be an arbitrary ring with iden-
tity. An R-module is an abelian group M together
with a scalar multiplication map

- :RxM-—-M
which satisfies the following azioms: Va,b €
R, mneM

a(m+n) = am+an
(a+b)m=am+bm
(ab)m = a(bm)

lm=m.

Example 2.4 Let F be a field, then an F-module
V is called a vector space over F.

Any subgroup N C M which is closed under scalar
multiplication by elements in R is itself a module,
called a submodule of M.

If S C M, then [S] denotes the intersection of all sub-
modules of M containing S. We may say that [S] is
the “smallest” submodule, with respect to inclusion,
containing the set S. The submodule [S] is also called
the submodule of M generatled by S.

Definition 2.5 M is finitely generated if M = [§]
for some finite subset S of M. The elements of S are
called “generalors” of M.

We denote by [ad;] the commutative principal
ideal ring of finite linear differential operators with
real coefficients. These are operators of the following
form

da
Z aaﬁ;v [/ P9 € %

Jinite

This necessarily restricts the class of problems treated
to linear, time-invariant, systems. The results, how-
ever, can be extended to time-varying systems by us-
ing rings defined over noncommutative principal ideal
rings (see Fliess [13] [14]).

Definition 2.6 Let M be an R [§]-module. An ele-
ment m € M is said to be torsion if and only if there
ezists 7 € R[] .7 #0, such that xm = 0. In other
words, m satisfies a homogeneous linear differential
equalion.

Definition 2.7 A module T such that all its ele-
ments are lorsion is said to be a torsion module.

Definition 2.8 The set of all torsion elements of a
module M is a submodule T called the torsion sub-
module of M.

Definition 2.9 A finite set of elements in a R[L]-
module M constitules a basis if every element in the
module may be uniquely ezpressed as a %[ad;]-lincar
combination of such elements. A module M is said
1o be free if it has a basis. Two basis possess the
same number of elements. Such number constitules
the rapk of the module M.

Propostion 2.10 Let M be a finitely generated left
® [:—t] -module. M is torsion if and only if the dimen-
sion of M as a k-vector space is finite .

Theorem 2.11 A finitely generated module M is
free if and only if its torsion submodule is trivial.

Theorem 2.12 Any finitely
generated R [ad;] -module M can be decomposed inio
a direcl sum

M=To®
where T is the torsion submodule and ® is a free sub-
module.

2.1 Quotient modules

Let M be an R-module and let N C M be a submod-
ule of M, then N is a subgroup of the abelian group
M and we can form the quotient group M/N as the
set of all cosets

M/N ={m+4+ N ; for me M} (1)

They evidently accept the operation of addition as a
well defined (commutative) operation ’

(m+N)+(p+N)=(m+p)+N

The elements m + N of M/N can now be endowed
with an R-module structure by defining scalar prod-
ucts in a manner inherited from M, namely,

a(m+N)=am+N ;Va€R and me M

The elements m’ = m(modN) are called the residues
of M in M/N. The map M — M/N, m — m =
m+ N, is called the canonical projection.

2.2

Linear systems enjoy a particularly appealing char- |
acterization from the algebraic viewpoint. This has
been long recognized since the work of Kalman [18].
More recently Fliess [13] has provided a rather dif- -
ferent approach to such characterization which still
uses modules but in a rather different context. Note
that the later viewpoint is related [14] to Willems'
behavioral approach [15].

Linear Systems and Modules

Definition 2.13 A linear system is a finitely gener-
aled left R [f{] -module A.



ixample 2.14 Consider a syslem L as a finite sel
f quantities w = (wy,..., wy) which are related by a
¢t of homogeneous linear differential equations with
oefficients in R;

B (w,("")) =Y da,i Wi =0, (days € )

Jinite

Jonsider the free R [-g;]-module F spanned by w =
W1,...,W,) and let = C F be the submodule spanned

"y

o = Eq (z‘u“f"’)) = Z G 7, (aasj €R)

finite

[he quotient module A = F/Z is the module cor-
esponding to the system. It is easy to see thal the
residue W of w in F [T satisfies the system equations.

2.3 Unperturbed Linear Dynamics

Definition 2.15 A linear dynamics D is a linear
system D where we distinguish a finite sel of quanti-
ties, called the inputs u = (uy,...,um), such that the
module D/[u] is torsion.

The set of inputs u are said to be independent if
and only if [u] is a free module. An output vector
y=(y1,..-,¥p) is a finite set of elements in D.

Example 2.16 Consider the single input single oul-
put system

d d d

d(F=bGu @b ERIF], a0

Take the free left ?R[%]-module F = [4,7) spanned
by@, . Let = C F be the submodule spanned by
o($)7 - b(§)a. The quotient module D = F/= is
the system module. Let u,y be the residues of T,7
inD. Then u,y salisfy the system equations. If we
let y be the residue of y in D/[u], then y salisfies

a($)y = 0: y and D/[u] are torsion.

2.4 Controllability

Definition 2.17 [13], [14] A linear system is said to
be controllable if and only if its associated module A
is free.

Example 2.18 The system given by w; = wy is con-
trollable since its associated module is [wa], which is
obuiously free.

Definition 2.19 A linear dynamics D, with input u,
is said 1o be controllable if and only if the associated
linear system is controllable.

Remark 2.20 For an unconirollable dynamics D,
the torsion submodule T corresponds to the Kalman
unconirollable subspace.

Example 2.21 The linear dynamics &, = u is con-
trollable, since its associated linear system is de-
scribed by a free module.

2.5 Observability

Definition 2.22 [13] A lnear dynamics D with in-
pul u and oulpul y, is said o de observable if and
only if D = [u,y]. The quotient module D/[u,y] is
trivial.

Example 2.23 The linear dynamics &1 = z2 ; &2 =
u; y=x, s observable since 2, =y ; z3 = ¥.

If the system is unobservable then [u,y] C D and the
quotient module D/[u, ] is torsion.

Example 2.24 The linear dynamics £ = r; ; £2 =
u; y = o is unobservable since z; ¢ [u,y] and the
residues T, , To in the quotient module D/[u,y] sat-
isfy T —F = 0 and Ty = 0 which is lorsion bul
nontrivial )

3 A Module Theoretic Ap-
proach to Sliding Regimes in
Linear Systems

Here we will introduce the basic elements that allow
us to treat sliding mode control of perturbed linear
systems from an algebraic viewpoint. The basic de-
velopments and details may also be found in Fliess
and Sira-Ramirez [12]

3.1 Linear Perturbed Dynamics

Definition 3.1 A linear perturbed dynamics D is a
module where we distinguish a conirol input vec-
tor & = (TW,...,8%m) and perturbalion inpuls £ =
(€1, &) such that "

D/(m, €] = torsion.

Control and perturbation inputs are not assumed
to interact, thus the condition

€1 (@ = {0}

appears to be quite natural. It will be assumed fur-
thermore assumed that (@] is free. This means that
we are essentially considering linear systems with un-
restricted control inputs. Note, however, that pertur-
bations are not necessarily independent in the sense
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that they might indeed satisfy some (unknown) set of
differential equations. For this reason we assume here
that [€] is not necessarily free, i.e. it may contain tor-
sion elements. Consider the canonical epimorphism

$:D—-D/E]=D
Since [@] N [€] = 0, then ¢ |z and ¢ |7 are isomor-

phisms, i.e.
(@ ~[u) ; €]~

This means that we should not distinguish between
“perturbed” and “unperturbed” versions of the con-
trol input (i.e. between % and u ), nor between similar
versions of the perturbation input { € and ¢ ). Since
D/[u] is torsion, we call D the unperturbed linear dy-
namics with u being the unperturbed control. It is
also reasonable to assume that the unperturbed ver-
sion of the system, D is controllable, i.e. D is free.
Regulation of uncontroliable systems is only possible
in quite limited and unrealistic cases.

3.2 A Module-Theoretic Characteri-
zation of Sliding Regimes

The work presented here follows [12], where an alge-
braic characterization of sliding regimes is presented
in terms of module theory.

Definition 3.2 Let D be a linear perturbed dynam-
ics, such that D is controllable. We define a submod-
ule S of D as a sliding submodule if the following
conditions holds

1. The sliding module does not contain elements
which are driven exclusively by the perturbations.
This condition is synthesized by [S] N {€] = {0}

2. The canonical image S of S in D = D/[€] is a
rank m free submodule, i.e. the quotient module

D/S is torsion.

The second condition means that all the control
effort is spent in making the system behave as ele-
ments that are found in S. '

It is convenient to assume that the unperturbed
version of the system is observable; D = [u,y]. This
guarantees that elements in the sliding module S may
be obtained, if necessary, from asymptotic estimation
procedures.

D/S is the unperturbed (residual} sliding dynam-
ics while D/ is the perturbed sliding dynamics. The
canonical image of @ in D/S is the perturbed equiv-
alent control, denoted by ;. The canonical image
of u on D/S is addressed simply as the equivalent
control, u.,. Note that U, generally depends on the
perturbation inputs £, while Ueq, is perturbation in-
dependent.

Example 3.3 Consider the linear perturbed dynam- -
icsy =W + £ In this case D = [&,9, £)/18), with
&= 4§—1u—E The module D/[u,€] is torsion and
D is rank 1, with y being a basis; D is also control-
lable. The condition § = —F may be regarded as o
des1rable asymptotically stable dynamics. Consider .

=[5] = [g+ 1. It is easy to see that 5 C D with
mnk S =1, while SN{€] = 0. Finally, the residue y
ofy in D/[y+u] satisfies : § = —y, which is torsion. -
Note that the unperturbed equivalent control satisfies
tieq + Ueq = 0, while the perturbed equivalent control -
satisfies ﬁeq + Ugg = —£.

3.3 The Switching Strategy

Let z = (z1,...,2m) be a basis of S and 7 =
(Z1,...,Zm) be a basis of S, such that z is the image
of 7 under ¢lz. The input-output system relating u
to z is right and left invertible, and hence decouplable
[16]. Therefore the multivariable case reduces to the -
single-input single-output case. The switching strat-
egy is, therefore, the same adopted for single input
systems. Note that the basis z (resp. Z) is unique up
to a constant factor.

Remark 3.4 Note that in the adopted framework the i
“matching conditions” are always satisfied. This is

particularly clear by realizing that the decoupled subd-

systems may be always placed in a Generalized Ob-

servability Canonical form [8].

Example 3.5 Consider the previous example, 7=

u + &, with sliding module S generated by s = u+y.

The element s is a basis for S, whiles =u+ Y isa

basis for S. The relation between s and u is trivially

invertible. A switching strategy is oblained by cond-

sidering § = —Wsign s, with W > 0 a sufficiently

large constant. This choice resulls in the disconlinu- .
ous controller, u+u = —W sign (u+y). The response

of the perturbed basis to the synthesized controller is

governed by 5 =& — W sign 3.

3.4 Relations with Minimum Phase
Systems and Dynamical Feedback

Definition 3.6 Let [u,S] stand for the module gen-
ergted by u and S. The sliding module S is said to be
minimum phase if and only if one of the following
conditions are satisfied

1 [u]=
2. If[u] ¢ S then the endomorphism 7, defined as
r:[u,8)/S — [u,8]/S has eigenvalues with neg-
ative real parts.
The first condition means that the elements of the

vector u can be expressed as a (decoupled) R[$]-
linear combination of the basis elements in S. The
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second condition means that some Hurwitz differen-
tial polynomial, associated with u, can be expressed
as a decoupled R[&]-linear combination of the basis
elements in S.

Example 3.7 In the previous ezample the basis s for
S was taken to be s = u+y and evidently [u] ¢ S,
since u is not ezpressible as a R[L] linear combina-
tion of s. Definitely [u] C [u,S] = [u,s]. Because
§ = tt+u, The residue u of u in [u, s]/[s] satisfies the
linear system equation ©+ u = 0 and therefore the
shiding module is minimum phase.

3.5 Nonminimum phase case

Let S be non-minimum phase. One may replace s
by some other output ¢ € D, which is for instance
a basis of [u,s] and such that the transfer function
relating u and o is minimum phase.

It is easy to see, due to linearity, that the conver-
gence of o ensures that of s. Thus the minimum phase
case is recovered. If the resulting numerator of the
transfer function, relating ¢ and u, is not constant,
then switchings may be taken by the highest order
derivative of the control signal. This gives naturally
the possibility of smoothed sliding mode controllers
(see [T}-[11]).

3.6 Some Illustrations

Example 3.8 Consider the perturbed linear dynam-
w0s, § =T+ &, and the (desired) uuperturbed second
order dynamics given by y + Wwny + w2y =0, with
0<¢ <1 and w, > 0. Consider the slzdmg module
SC D, generated by s = © + 2(w,u +w?y. The el-
ement s is a basis for S and 5 = T+ 2w, + w2y
is @ basis for 5. The residue y of y in D/S salisfies
the relation § + 2wny + w2y = 0, which is certainly
torsion and asymplotically stable to zero.

Evidently [u] ¢ [s]. In order to oblain the neces-
sary inclusion, consider the module [u,s]. Here one
finds that the relationship between u and the basis el-
ement s for S, is given by § = it + 2(wpt + wiu.
Taking the quotient [u, s]/[s], one is left with the tor-
sion system it + 2wnts +wu = 0.

The linear map associated to % is represenied by

the matriz
r= 0 1
T —wl —2€w,

which has eigenvalues with negative real paris.
sliding module S is therefore minimum phase.

Let W be a positive constant parameter. A dy-
namical sliding mode controller, which is robust with
respect 1o €, is given by

The

T4 Awn T 4 w2t = ~Wsign(T + 2(wn¥ + w37).

Use of the proposed dynamical swilching sirategy on
the system leads lo the following regulated dynamics
fors, B )

T =€+ Awnf +wiE — Wsign 5.
For sufficiently high values of the gain paremeter W,
the element 5 goes 1o zero in finile time, and the de-
sired (torsion) dynamics is achieved.

Example 3.9 Consider the nonminimum phase sys-
tem §+ AwaY+w2y = - fBa+¢, (with > 0), and
the desired dynamicsy+ag =0 ; o> 0. Evidently,
s = §+ay is a basis for the sliding submodule S, and
s = 0 is deemed to be desirable.

However, as before, [u] ¢ S. The relationship
between s and u is readily obtained as i + (o — Bt —
afu = § + 2wns +wls. The canonical image u of
u i {u,s)/[s] leads to the followmg unstable (torszon)
dynamics i+ (a—p)i—afu = (£ +°’)(dt -Bu=
The sliding module is therefore nonminimum phase

Take a new basis ¢ of S such that ¢ = o+ s.
Note that s = ¢ — o and 5 = & — B5. Also, after
some algebraic manipulations one can write

(Of+5)(u—v) (Wi = 2Awna~af)y
B2 + 2wn B + w2

which clearly shows that o 1s an element in the system
module. One now has & + 2wn6. + wc = 4 + au.
The residue of u in [u,0]/[o] satisfies © + au = 0,
and the sliding module is now minimum phase.

A robust static ( resp. dynamical) sliding mode
controller may now be synthesized which guarantees
finite time (resp. asymptotic) convergence of T to
zero. Note that since 5 = (d%- - B) 7, by forcing &
to zero, then § also converges to zero. The desired
dynamics is, therefore, atlainable by means of sliding
modes.

4 Conclusions

Module Theory recovers and generalizes all known
results of sliding mode control of linear multivari-
able systems. A more relaxed concept of sliding
regimes evolves in this context, as any desirable out-
put dynamics is synthesizable by minimum phase slid-
ing mode control. This statement is independent of
the order of the desired dynamics. Generalizations
demonstrate, for instance, that matching conditions
are linked to particular state space realizations, but
they have no further meaning from a general view-
point. This fact has also been corroborated in re-
cent developments in sliding mode observers (see Sira-
Ramirez and Spurgeon [19]). In this article multivari-
able sliding mode control problems have been shown
to be -always reducible to single-input single output
problems in a natural manner.
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Nonminimum phase problems can be handled
by a suitable change of the output variable, when-
ever physically feasible. The practical implications of
this result seem to be multiple (see also Benvenuti
et al [20]). Extension of the results here presented
to the case of time varying linear systems requires
non-conmutative algebra.

An exciting area in which the algebraic approach
may be used to full advantage is the area of sliding
mode observers for linear systems. An interesting
topic for research rests on the extension of sliding
mode theory, from an algebraic viewpoint, to nonlin-
ear multivariable sytems. The results so far seem to
indicate that the class of systems to which the theory
can be extended, without unforseen complications, is
constrained to the class of flat systems (see Fliess et
al [21)).
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