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Abstract In this article, an adaptive dynamical sliding mode based
feedback strategy is presented for asymptotic output stabilization of
nonlinear controlled systems exhibiting parametric uncertainty. A
dynamical feedback controller, nominally acheving output stabilization
via exact linearization, is obtained by resorting to generalized
observability canonical forms and sliding mode control stabilization. The
adaptive version of the dynamical variable structure controller is then
obtainable via standard, direct, overparametrized adaptive control
techniques available for linearizable systems through static state
feedback. An illustrative ple from the chemical process control area
is provided.

1. INTRODUCTION

Asymptotic output stabilization for p ic uncertain nonlinear
systems constitutes a most important problem in control systems design.
Contributions, from the differential geometric viewpoint, were given by
Isidori and Sastry [1], Kanellakopoulos ez al [2],[3}, Taylor et al [4),
Campion and Bastin [5), Teel et al [6] and many others. For enlightening
details, and general results, the reader is referred to the books by Sastry
and Bodson [7], and Narendra and A ny {8]. R h trends are
contained in the collection of lectures edited by Kokotovic [9]. For other
contributions to the area, the reader is referred to the reprint book edited
by Narendra et al {10].

In this ariicle, using the results of [1], an adaptive asymgﬁﬁc
-output stabilization scheme 1s proposed for dynamical sliding-mode-based
exactly linearizing controllers, obtained b d output diff iation,
The scheme is restricted to the class of nonlinear systems which exhibit
linear parameter dependence in their defining vector fields.
Overparametrization [5] and availability of the dynamical controller state
variables are the key issues that allow application of direct adaptive
control techniques, available for statically input-output linearizable
systems, to dynamical controlled systems. A chemical process control
application example is presented.

In Section 2 of this paper, the adaptive dynamical variable
structure control stabilization scheme is presented (see Sira-Ramirez
[11]-{12] for the non adaptive case). Section 3 deals with a chemical
process control example including computer simulations. Concluding
remarks, and proposals for further research, are collected in Section 4.

2. ADAPTIVE OUTPUT STABILIZATION OF
DYNAMICALLY LINEARIZABLE NON LINEAR
SYSTEMS

2.1  Linearization by Discontinuous Dynamical
Control.

Feedback

Consider the following n-dimensional state space realization of a
single-input single-output nonlinear system :

X = f(x,8) + g(x,8)u

2.1
y =h(x,8) @

where f : R0+P — R® and g: Ru*P - R0 are, for fixed 8 in RP, C>
vector fields globally defined on R®, and h : R"*P -3 R is a C*
function. It is assumed that the system bas strong relative degree r<n
(Isidori [13] ). The parameter vector 8 is assumed to be constant and

f,g and h are Jinear functions of 8.

* This work was supported by the Consejo de Desamrollo Cientifico,
Humanfstico y Tecnol6gico of the Universidad de Los Andes under
Research Grant I-358-91.

The i-th time derivative of the output function may be written, in
terms of the state vector x and the control input u, as

y® =bi(x,8) for i <r ; with by(x,0) = h(x,8) 22
y® =b;(x,8,u,u),...,uli+-D) +a(x,8)ul) for r<isn

In particular, the n-th time derivative of y may be obtained as :

y(® =by(x,8,u,u(1),...;u-r-1) ta(x,8)ule-n (2.3)

We assume that the "observability " matrix, constituted by the
(row vector) gradients, with respect to x, of y® (i=0,1,...,n-1) is full
rank n. i.e.,

1 -1 1
rank 30 YDy Oy Dyy®) @4
ax ax

This assumption in&plies that (2.1) can be described by an n-th
order input-output scalar differential equation ( see Conte ef al [14], Diop

[15] ). The implicit function theorem allows one to locally solve for x,
from (2.2), in terms of u and its time derivatives, as well as in terms of
the derivatives of y. In other words, there exist a set of n independent

functions 9 , implicitly defined by (2.2), such that :

x; = 9;(y,yV,...,y @ D u,u(V) . ule-r-1)) i=1.2,..,0

2.5)

In general, one locally obtains a representation of (2.1) in the
form :

y® = ¢(y,y),...,y®-1,0,u0,u(),...,u@n) 2.6)

Definition 2.1 (Fliess {16] ) Let the output y be identically zero for an
indefinite amount of time. The zero dynamics, associated with (2.1), is
defined as :

¢(0,8,u,uM,...,ueN) =0 2.7)

We assume that (2.7) is locally asymptotically stable to a constant
operating point, u = U. In such a case we say (2.1) is locallyminimum
phase around the equilibrium point of interest.

siti .2 Let ufil denote u,u()),...,u®, and let p be a strictly
positive scalar quantity. Then, the following dynamical discontinous
feedback controller:

-1
a(x,8)u= _by(x,8,uler-11) -’ or;bi(x,6)

i=1

n-1
.2 a{b)-(x,e,u[)'-r-ll) +a(x,6)u(j-r)]

jr

T
-H sgn {2 b 1(x,8)+

i=1
n .
Y ofb1(x,8,00 Myrax,0)ut-1)]
j=r+l
o =1
@8

drives the output of system (2.1) to satisfy, in finite time, a linearized
dynamics of the form :
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yOU 4 0, y@ D4+ ayy =0 (2.9)

Proof : Define the quantity : s =y* "+ o y* P+ .+ @y, and let
s(0) stand for the value of s at time t = 0. One easily verifies that ds/dt =-
1 sgn(s). Hence the condition s = 0 is reached in finite time (given by : T
=l {5(0)|) and it is indefinitely sustained in a sliding mode fashion
(Utkin [17]) . 8]

The scalar time-varying differential equation (2.8) defines a
dynamiical feedback controller which can accomplish exponential output
stabilization to zero, in a manner entirely prescribed by the set of chosen

design coefficients {0y, ®j ,..., &, 1 }, provided that the system is

minimum phase. Typically, one chooses the @'s to obtain an
exponentially asymptotically stable dynamics for (2.9). The set of input
derivatives ul--11 in (2.8), naturally qualifies as a state vector, for the
dynamical controller, which is available for measurement. If the quantity

a(x,8) is bounded away from zero then no impasse points need be
considered for the dynamical system representing the linearizing
controller (see Fliess and Hasler [18]). This assumption is equivalent to
the strong relative degree assumption adopted in [1].

Remark 2.3 Notice that the discontinuities associated to the underlying
variable structure control strategy, imposed on the auxiliary function s,
directly affect the (n-r)-th derivative of the input signal u. The output of
the dynamical controller (2.8) is, thus, a smoothed signal. This feature
thus provides a chattering-free, yet robust, control input to the regulated
plant. Evidently, a simpler static sliding mode controller may also be
directly obtained from (2.2), by stopping the differentiation process
when i = r. However, our main objective is to propose a feedback
regulation scheme which retains the smoothness, and robustness,
inherent in (2.8) for those cases in which the vector of system

parameters, 6, is unknown.

2.2 An Adaptive Regulation Scheme for Dynamical
Sliding-Mode Linearizable Systems.

In this section we propose, for the class of systems described by
(2.1), a chattering-free adaptive variable structure control linearization
scheme for asymptotic output stabilization problems. We should stress
that, eventhough, traditionally, the siding mode control technique has
been specially devised to efficiently regulate systems with parametric and
external uncertainty, the class of systems where the switching surface
does not depend on system parameters may be quite limited. Dynamical ,
(non-adaptive) sliding mode control for nonlinear systems, as proposed
in {12] and described above, exhibits the advantageous possibility of
smoothed (i.¢., chattering-frec) control input signals and state responses.
However, dynamical sliding modes are naturally created on suitable
input-dependent sliding surfaces which generally depend, in a crucial
manner, upon the system parameters. These parameters may, in turn, be
imprecisely known, or, still worse, completely unknown. This fact
makes the sliding surface poorly defined and switchings cannot take
place, as precisely required, on the switching nianifold. We address this
class of discontinuous control problems from the perspective of an
adaptive control viewpoint.

The effectiveness of the dynamical feedback controller (2.8) is
thus highly dependent upon perfect knowledge of the involved system

parameters 6. Itis clear that exact cancellation of nonlinearities would not
be generally possible if the dynamical controller (2.8) was computed
using estimated values of such parameters, which are known to be in
error with respect to their true values. In this section we assume that the

components of @ are constant, but otherwise unknown, and present an
adaptive approach to dynamical discontinuous feedback linearization. We

denote the estimated values of the parameter vector as 8.

Remark 2.4. It may be verified that the linearity of f, g and h with respect
to © implies that the quantities by(x,0) ( i=0,1,...,n-1) and a(x,8), in
(2.2), are multilinear functions of the components 6; of 8. Hence, if one

defines a large dimensional vector © containing, as individual
components, all possible ordered homogeneous multinomial expressions
in the Bj's, of degree smaller than n, then the expressions for b;(
i=0,1,...,n-1) and a are indeed linear functions of &. This observation
and the involved process, known as "overparametrization” [5], allows us
to extend recently proposed adaptive control techniques [1], developed

for systems lincarizable by static feedback, to systems linearizable by
dynamical feedback (sec Fliess [19] , and also [11]). Q

Consider the time derivative of the quantity s, defined in the proof
of proposition 2.1:

-1 n
§= rz o;bi(x,0) + Z aj{bj(x,e,ulj'f-”) + a(x,9)u(j~r)]
= (2.10)

i=1

Let §, the estimate of the sliding surface coordinate function, be
defined as :

M-

33
n

-~ n ~ {jr2] ~
oubax@y 3, afbya(xn rage,dute)
‘ @in

jEr+l

We explicitly assume that the originally ified sliding surface is
"robust” with respect to small paramietric perturbations, in the sense that
motions constrained to its estimated value § do not result in unstable
constrained dynamics. This assumption means that small parametric
perturbations do not result in large discrepancies between the actual and
the perturbed sliding suface coordinate functions. If the imprecision of
system parameters is so large that estimated values of the sliding surface
do not, somehow, guarantee stability of the corresponding ideal sliding
dynamics, then, surely, the method here proposed is not applicable.

Define also the following dynamical discontinuous feedback
controller, based on estimates of the system patameters :

~ ~ -1 -~
a(x,8)um) = -by(x,8,ul11) -3 o;bi(x,6)
i=1

n-1 -~ ~
_2 aj[b,-(x,e,uu-r-ll) +a(x,e)uu-:)]

j=r

W sgn {i aibi-l(x:g)

i=1

n ~ [(jr-2) ~
+ 3 oibpi(xBu  )+a(x,B)ul+D,
j=r4l

@12)

Then, if a dynamical controller of the form (2.12) is used to
regulate the evolution of ds/dt, the expression (2.10) is found to be, after
some manipulations :

-1 ~
t=-psgnie Y, alb@o b(xo)

i=1
n-1 ~ ~
+ 2 a,-{bj(x,e,uli-f-‘1)-bj(x,9,uU'f-U) + [a(x,B)-a(x,B)]u(i")}
jer
+by(x,8,000-r-11)-by(x,8,ule-1-1]) +[ a(x,ﬂ)-a(x,e)] utes)
(2.13)
By virtue of Remark 2.4, expression (2.13) can be written as a

linear function of the parameter estimation emror 6 - 6 := ¢

A~ T
§=-psgni+(0-8) Wxultd)=psgnd + ¢ W(xula)
@2.14)

where W is the nonlinear state-dependent regressor vector, dependent
also upon the "state” of the dynamical controller, represented by u and the
derivatives of u up to order n-1-1, and v(®-D as given by (2.12). Thus, the

regressor vector W is actually of the form W(x,8,ulo-r-1]) , but we prefer

to use the simpler form: W(x,ulo-7]). The following assumption is quite
standard in adaptive control schemes.

Assun'm‘tiou 2.5 We assume that the regressor vector W(x,ule-) is well
defined and it is a bounded function for bounded values of all its
arguments.
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It is easy to see that the switching surface coordinate estimation
error §-§ is given by :

olbir(x.0)- bia(x,8)] +

~
§-s=

T
i=1 ‘

] Aot ~ [2] ~ .
> a,-[b,-_,(x,e,u“ ") by 1(x.0,u )+[a(x,6)—a(x,9)]u(l'f‘”}

J=rel
g . (2.15)
= (©-8) Wy(xulew1) = oW, (xulee1))

where W‘(x,u[“""”) is a switching surface regressor vector,

which does not depend on the parameter estimates. The following
assumption is not very restrictive.

Assumption 2.6 We assume that the switching surface regressor vector

Wi(x,ule--11) has bounded first order partial derivatives, with respect to
all its arguments, for bounded valucs of its arguments.

Lemma 2.7 Suppose ¢ and its time derivative ¢ are bounded functions.

Assume also that u and all its time derivatives up to order n-r are’

bounded. Then, the time derivative of the estimate of the sliding surface
coordinate function, dS /dt is also bounded. Hence, § is uniformly
continuous.

Proof From (2.14), the assumption in the lemma about the

boundedness of ¢ , and assumption 2.5, it follows that § is bounded.
Using now (2.15), and the previous assumption 2.6, it readily follows

from the fact that ¢ is assumed to be bounded, that dS/dt is also
bounded, provided the control input u and its involved time derivatives
are bounded. It is well known that a sufficient condition for a function to
be uniformly continuous in time is that its time derivative be bounded
(see [20], pp 125). Hence % is uniformly continuous. The lemma is
established.

Let K be a known positive definite matrix. Consider the
Lyapunov function given by :

V(s,0) = % 2+ %OT Ko (2.16)

The time derivative of such a Lyapunov function is obtained, after
use of (2.14) and (2.15), as:

V)= 55 +0T K =-pssgn s+ [s Wixule)+ K ¢
=—p| 5| +¢7[Weeald) (5 + "W (e ulmr1)
- WW,(cule1) sign§ + K )]

Choosing the variations of the parameter adaptation error
according to the lJaw :

¢=-8=
K [§+¢Tw,(x,uln-r-ll)] W(x,ulo-rl) _ uWy(x,ule-1) sign § ‘

(2.17)
one, hence, obtains:

Visd)= -pSsgns =—p| 5 |<o0 (2.18)
The Lyapunov function (2.16) decreases along the trajectories of

the controlled system and, therefore, both, the sliding surface coordinate
s and the estimation error ¢ are bounded. The boundedness of s and ¢
implies, by integration of both sides of (2.18), that the estimated sliding
surface coordinate function § is absolutely integrable. . Notice,
moreover, that, from the definition of s, a bounded s implies bounded
values for y and for all its time derivatives, up to order n-1. This, together
with the minimum phase assumption means, by virtue of the full rank
condition in (2.4), that the state vector x is bounded. This in tum implies,

by assumptions 2.5 and 2.6, that the regressor vector W is bounded and
that the partial derivatives of the switching regressor vector Wj are also

bounded. Since 0 is bounded, it then follows by virtue of lemma 2.7, in
conjunction with the demonstrated boundedness of ¢, that ds/dt, the
time derivative of §, is bounded and, hence, that § is, indeed, uniformly
continuous. Evidently, this result implies that the absoulte value of § is
also uniformly continuous. The following "Lyapunov like" lemma, based
on Barbalat's lemma (see Slotine and Li {20], pp. 125-127 ) guarantees

then the convergence of l H f to zero.

Lemma 2.8 [20] If the scalar function V(s,$) is lower bounded, and its
firt order time derivative V(s.9) is negative semidefinite and uniformly
continuous in time, then V(s,9) tends to zero as time goes to infinity.

Evidently, the Lyapunov function (2.16) satisfies all the

assumptions of Lemma 2.8 and , therefore, I ] |asymptoﬁcally
approaches zero as time goes to infinity.

Let|s Iasymptotically approach zero. Then, the linearized
dynamics (2.9) will not be exactly satisfied and, instead, the following
output dynamics, obtained from (2.15) and the definition of s, will be
valid, when §=0:

YO 4 0 y® e+ gy = ¢ Wrulerll)  (2.19)

The choice of the ot's in s is such that the system (2.19) is
exponentially stable when the right hand side is set to zero. It follows, by
a well known bounded input-bounded oputput theorem for linear systems
(see Brockett [21], pp. 196), that system (2.19) is then uniformly
bounded input bounded output. This means that y, and all its time
derivatives, are uniformly bounded, whenever the scalar input

T A . A

¢ Wy(x,uirr1) is uniformly bounded. Moreover, y and all its time
derivatives approach zero if the bounded scalar input is known to
converge to zero, as t approaches infinity.

Remark 2.10_It follows from (2.15) and the previous considerations that,
if the parameter estimation error ¢ converges to zero then the actual value
of the surface coordinate function s will, indeed, converge to zero.
However, convergence of the estimation error ¢ to zero is very much
attached to a condition of persistency of excitation (see also [7],[8] ).
This condition may be derived, in this case, as follows: Consider thats =
0. Then, one may reWritq (2.17) as:

¢ = -K-! W(x,ule-)Wl(x,ulee11) ¢ (2.20)

i.e. the parameter update law is represented by a time-varying linear
differential equation with solution given by :

t
o) =| ex -K“f W(x,ulo-)WI(x,ulo-r11) dt | [$(0)
b @21

It is well known that if the regressor vectors are persistently
exciting i.e., if there exist a;, a; and §, all positive, conistant, quantities
such that, forallt :

t+8
a,lzf WEuE-HWIk e de > 8 (2.22)
1

then, both, s and ¢ exponentially converge to zero. Condition (2.22),
however cannot be verified a priori due to the fact that both regressor
vectors W and W; are functions of the state X of the system, and of the
state ul®-r-11 of the dynamical fecdback controller. N}

As itis standard in nonlinear adapiive control theory, it should be

stressed that equation (2.17) must be regarded as a set of simultaneous,
coupled, time-varying (discontinuous) nonlinear ordinary differential
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equations in the unknown components of, both, the parameter estimation

error vector ¢, and the parameter estimate vector ©. i.e.,

¢=-K"! <{§ + ¢TW,(x,u["""1)] W(x,uln-rly

- ;,tW;(x,u[“"'”) sign §

2.23)

A

6= K [E + ¢Tw,(x,uln-r-ll)] W(x,ulo))

_ uW(x,ule1) sign §

Initial conditions for the coupled system (2.23) are usually
arbitrarily chosen for the unknown components of the composite vector

~T . X
[¢ T, e ]T. The parameter update equations are, hence, assumed to be
solved on line, and their generated solution trajectories immediately
delivered to the dynamical adaptive controller (2.12) .

3. AN APPLICATION EXAMPLE IN CHEMICAL
PROCESS CONTROL

3.1 A Continuously Stirred Tank Reactor Model, (Kravaris
and Palanki [22]).

Consider the following simple nonlinear dynamical model of a
controlled CSTR in which an 1sothermal, liquid-phase, multi-component
chemical reaction takes place :

X1=1-(1+Da) x1 + D.zx%
i2= Dai x1- X3 -(Dyzt Dys)xd +u

%3 =Dyxd-xs a1

y=x3-Y

Where x, represents the normalized (dimensionless) concentration
C,/CAF of a certain species A in the reactor, with C4p being the feed
concentration of the species A measured in  mol.m™3. The state variable
X, represents the normalized concentration Cp/ Cpp of the species B. The
state variable x3 represents the normalized concentration Co/Cap of a
certain species C in the reactor. The control variable u is defined as the
ratio of the per-unit volumetric molar feed rate of species B, denoted by
NpF, and the feed concentration Cpp. i.e.,u= Npp/(FC,p) where Fis
the volumetric feed rate in m3 s-1, The constants Dy , Dyp and D3 are
respectively defined as k,V/F , kK, VCAi/F and k3VC,p/F with V being
the volume of the reactor, in m?, and k;, k; and k; are the first order rate
constants. in s°1. Y represents a desired total concentration value.

Itis desired to regulate the normalized concentration C/Captoa
prescribed set-point vaue specified by the constant Y. It is assumed that
the control variable u is naturally bounded in the closed interval [0,Upyax]
reflecting the physical limits of molar feed rate of the species B.

System (3.1) is of the forn:

% = 81y (x) + 82f(x)+85f3(x) +64f4(x)+05f5(x) + 821 (x)u

y=h(x) 3.2

with: .

1 X1 -X)
f1(X)=[o] ;fz(x)=[ X2 ] :fs(x)=[ X1 ] ;

0 -X3 . 0

x3 0 0
fax)=| x} [ifs(x)=]| x3 | ; Sl(x)=[1]

0 x3 0

h(x) =x3 -Y
and:

01=1;8,=1;83=Dy1;84=Dy3 ;85=Dy3;65=1

It is easy to verify that for the given system (3.1), the rank of the
following 3 by 3 matrix :

Ay Dy
ox
0 /] 1
[ 2D,3x2 -1
2D, Dpsxz 2D,1D43x1-6Da3x2 1

-6D!3(D.24D.3)x% + 2D,3u

3.3)
is everywhere equal to 3,-except on the line x, = 0. Natural physical
considerations lead us to restricting X, to values grater than zero.
Negative values of x,have no physical significance. '

A stable constant equilibrium point for this system is given by :
u=U;
< 1+ Dudxa (V)
(+8y

[.1 1+ 4(U+ 95 Bs+ 85+ 636,
146; 1483

© 2(B4+05+8585)
x3(U) = 85{x,(U)) 2

x2(U) = (1+63)

The zero dypamics associated to system (3.1) is obtained from
(3.5) by letting y = y() = y(?) = 0, in the input output representation
which is ommitted here in the interest of simplicity . Such a zero
dynamics is:

{ -20405{1+63) - 63395-89395(94+95),\/T ]Vi
s 85

+ 484050 + e,[ 2Y'V %5- + 2844089 Y + 205 u

[3¥_+2(94t95) Y +285u ]
20405

+[ 20504+ 10(84+65) + 6(94+95)2v3 J YL X
85 13

+[29395 - 6 65 + 2051 -805(84+05), /-—qu]\/'f
05 65

+205u2 =0

(3.6)

It can be verified afier tedious but straightforward manipulations
that the system is minimum phase around the physically meaningful
equilibrium point of (3.6), given by the largest solution, u= U > Y, of
the resulting quadratic equilibriom equation. This solution coincides with
the one obtained from (3.4) under the equilibrium condition : Y =
X, (U)+X,(U).

3.2 Non Adaptive Linearizing Sliding Mode Controller for
Continuously Stirred Tank Reactor Model. .

Imposing on the output y of (3.1) the following linear
asymptotically stable dynamics:

YO +oyD+oyy =0 ;5 oy, dp>0 (CX)]

one ieadi]y obtains, using the result of proposition 2.2 above, the
following stabilizing discontinuous dynamical feedback controller: :
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i= 1.
20sx,

8305((10-4002)1%5-2%,-4x 1) +6305 (2x1%,-2x3)
+ 030405(8x,x3 - 2x3}+0303(8x;x3)
+ 0,405 (8x3 u - 1253 + d0px3) +0H(8x u - 12x3 + d0x])

[65( 8xqu - {7 + o)} - 2u2-400%5u + 60%3 ) +

- 60305 -120,63x% -603x4 +(1-02 + O)xs - psign(s)
(3.8

The ideal sliding dynamics (3.7) takes place on the input-
dependent sliding surface:

s(x,0,8) = { 3-3) x§ - 2%,u)05 + 26465x:%;

. - 2840553 - 2053+ (1-0)xae @y (xs-Y)=0 B9

The performance of controller (3.8) is depicted in Figure 1, where
the computer generated state variable trajectories X1(t), X5(t) and x4(t) are
shown, along with the non-chattering control input trajectory u(t). The
evolution of the sliding surface coordinate s is shown in figure 2. The
variable structure controller parameters, used in the computer

simulation, were: p=35,0, =54, ;= 9,8;=D,;=3,8,=D,, =
0.5,85=D,3 =1and Y = 0.7737. The state trajectories are seen to
converge to their equilibrium values given, according to (3.4), by x; =
0.3467, x, = 0.8796 and x3 = 0.7737. U,,; was taken as 3.

3.2  Adaptive Sliding Mode Dynamical Linearizing Control
for Continuously Stirred Tank Reactor Model

Due to lack of parameter knowledge, instead of the exactly

lincarizing controller (3.8), one uses a dynamical variable structure
controller, based on estimates of the overparametrization vector

components, given by:
d=—l - od 8xqu - {7 + 00 Jx§ - 2u2-4apxp0 + 60px3 ) +
20sx; g
Be((10-402)x1x5-232-4x10) +6; (2x1x2-2x)
+ 83(8x1x§ - 2x3)+59(8x|x§) + 810(8)(3 u - 12x3 + 4axx3)
+a”(8x% u - 1253 + 4oyx3)6 8,2)(3 -126131{3

-6014xf +(1-002 + 0 )x3 - psign (s )]

(3.10)

where Bs, 86 ++- B4 are, respectively, the estimates of 05, 8,85
...... 0>

The sliding mode approach would then be based on an estimate of

the switching surface coordinate function, given by :

3(xu,8) = {{ 3-05) x3 - 2%,u]05 + 266x:x; -

2 - 3.11
Zemxg- 29|1x§+ (1-02)x34 @y (X3-Y)=0 )

The results of the previous section were used and an update law
of the form (2.17) was obtained, The expressions are quite complex and
are ommitted.

Simulations werse run to assess the performance of the adaptive
dynamical sliding mode controller (3.10),(3.11),(3.14). The state
variable trajectories x)(1), X,(1) and X4(t) are depicted in Figure 3,
together with the non-chattering control input trajectory u(t). The state
trajectories are seen to converge to their ideal equilibrium values given by
x; = 0.3467, x, = 0.8796 and x3 = 0.7737. The time evolutions of the
sliding surface coordinate function s, and of its estimate §, are shown in
figure 4. Besides the small discrepancy between the two surface
coordinates, it is clearly seen that § converges to zero reasonably fast
while the actual sliding surface converges to zero in a much slower

fashion. In figure 5, the estimated parameters are also shown to converge
to constant values not coinciding with their "true” values. The variable
structure controller parameters and the constants for the adaptation laws

weresetas: p="5,0,=9, o, =54, Kes=0.5,Ke =1.0,Kpy
20.0 Kgg=20.0,Kg =40.0,Kg19=10,Kyy ;=10 ,Ky5 5=
20.0, K15 13=20.0,K;4 14 =200.

4, CONCLUSIONS

In this paper, adaptive dynamical discontinuous feedback
compensators were examined for a class of parametric uncertain systems
linearizable by dynamical sliding mode based strategies. The results
show that whenever the input-dependent sliding surface exhibits an
explicit dependance on the uncertain parameters of the system, an estimate
of the switching surface, which is known to be in error with respect to the
exactly linearizing manifold, must be used for the generation of the
controlled switchings. A Lyapunov approach shows that the estimated
trajectory of the sliding surface coordinate function is asymptotically
driven to zero by meahs of the dynamical variable structure control
strategy. It should be remarked, however, that such asymptotic behavior
is not, generally speaking, achieved by means of sliding motions taken

lace on the zero level set of the estimated value of the sliding surface.

he parameter estimation error ad ion law is of the discontinuous
type, with discontinuities taking place precisely on the estimated values of
the sliding surface coordinate function. As it is guite standard, parameter
convergence is achieved to the actual, or nominal, sliding surface if a
modified version of the well known condition of persistency of excitation
is verified.

The proposed adaptive dynamical sljdini mode control approach
to stabilization tasks benefits from the fact that the generated input
trajectories, and the associated state and output responses, are non-
chattering. This is due to the smoothing of the discontinuities
accomplished by the integration features imbedded in the dynamical
discontinuous fecdbakc controller .

An illustrative chemical process control example was presented
along with highly satisfactory simulations results.
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'FIGURES

Figure 1. Time response of states and input variables for non adaptive
dynamtical sliding mode controlled Continuous Stimed Tank Reactor
Example.

. s(t)

-3

Figure 2. Sliding surface coordinate function evolution for non adaptive
dynarvical sliding mode controlled CSTR.

Figure 3. Time response of states and input variables for adaptive
dynamical sliding mode controlled Continuous Stirred Tank Reactor
Example.
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Figure 4. Estimated sliding surface and (actual) sliding surface
coordinates functions evolution for adaptive dynamical sliding mode
controller case.

s [:]
N o
(] 1 2 3

9.01 t
N o

3.002 0
2.999]\ / )
[ T z 3
t
G UL
© Oy
% 1 7 . 3
013 t
0.
612
0.2
1 1 3 v ER
1"65]/—_\ ’ 014
0.995 /w
[ 1 F) 3 t

Figure 5. Evolution of estimated parameters 85 8¢ 07 ... 014 for
adaptive dynamical sliding mode controlled Continuous Stirred Tank
Reactor Example.
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