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Abstract

A feedback resetting strategy, excercised on the out-
put of a purposely designed unstable dynamical feed-
back controller, is shown to yield a robust, and effi-
cient, output voltage stabilization of nonlinear ave-
rage models of DC-to-DC Power Converters around
any non-minimum phase equilibrium point of the
system. The technique guarantees, in an average
sense, an asymptotically stable behavior of the con-
trolled converter state variables towards their re-
quired equilibrium values, while the unstable dynam-
ical compensator output is forcefully kept bounded
within an arbitrarily small neighborhood of the re-
quired controller operating point

Keywords : DC-to-DC Power Converters,
Non-minimum Phase Systems, Sliding Regimes.

1 Introduction

Discontinuous feedback regulation of linear, and non-
linear, dynamical systems has been traditionally
studied in the context of Sliding Regimes, Pulse
Width Modulation (PWM) or Pulse Frequency Mo-
dulation (PFM) strategies (see Utkin [1], Tsypkin
[2], Skoog and Blankenship (3], Sira-Ramirez and
coworkers [4]-[5] and Taylor [6]). The obtained feed-
back controllers are known to be robust, and rather
insensitive, with respect to “matched” perturbation
inputs and bounded structural perturbations affect-
ing the controlled plant.

In a rather non-traditional context, induced
controller output discontinuities have been proposed,
in Abu el Atta-Dos and Fliess (7], [8], as a feasi-
ble means of circumventing singularities associated
to nonlinear static controllers in Predictive Control
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schemes based on system inversion. The fundamen-
tal feature of this development is based on inducing
calculated “jumps”, or controller resettings, on the
compensator output when its trajectories approach
the immediate vicinity of a singularity in the con-
trol space. The corresponding controlled state tra-
jectories of the plant, nevertheless, remain contin-
uous. The possibility of inducing discontinuities in
the control variable, or in the dynamical controller
states (such as those obtained by “resetting of inte-
grators”), has been little explored in controlling non-
linear systems around non-minimum phase equilib-
rium points. Recent contributions dealing with the
control of non-minimum phase systems by means of
an educated re-specification of the output variables
has been proposed by Benvenuti et alin [9]. In the
linear case, the same approach has been entirely jus-
tified from a Module theoretic viewpoint by Fliess
and Sira-Ramirez in [10].

In this article, the robust features of quasi-
sliding mode control, induced by the possibilities of
“resetting” of the states (i.e., integrator outputs) of
a dynamical linearizing controller, is shown to yield
a feasible feedback stabilization procedure for the ro-
bust regulation of DC~to~DC Power Converters (see
Kasakian et al [12]), towards non-minimum phase
equilibrium points. The basic idea consists in utiliz-
ing the Fliess’s Generalized Observability Canonical
Form (FGOCF) ( sec Fliess [11]) associated to the
DC-to-DC Power Converter (see also Sira-Ramirez
and Lischinsky—Arenas [13]). Using such a general-
ized canonical form, the specification, by means of
straightforward system inversion, of an exactly lin-
earizing, yet, unstable first order dynamical feedback
controller is rather direct. The resulting closed loop
state trajectories naturally seck the desired constant
equilibrium under the influence of the unstable con-
troller output. A switching logic, based on active
resetting of the nonlinear controller’s integrator out-
put, may then be devised such that a quasi sliding
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regime is formed on a small “band” centered around
the unstable equilibrium point of the dynamically
generated control input signal. By forcing the con-
troller to exhibit a small amplitude, quasi-periodic,
oscillation around the required equilibrium value, the
controlled system state trajectory achieves, in an ave-
rage sense, asymptotic convergence towards its cor-
responding equilibrium point.

Section 2 is devoted to apply the proposed con-
troller resetting stabilization procedure for the di-
rect regulation of output voltage variables, around
non-minimum phase equilibrium points, in average
models of PWM controlled DC~to-DC Power Con-
verters. Simulations are shown which demonstrate
the advantageous features of the proposed control
strategy. Section 3 contains the conclusions and sug-
gestions for further research.

2 Direct Output Capacitor
Voltage Stabilization in DC—
to—DC Power Supplies

2.1 The Boost Converter

Consider the Boost converter model shown in figure
1. This circuit is described by the following bilinear
state equation model

z; = —(l-uw)wpza+b
(&2 = (l—u)wo T —wy Ty
y = z2 (2.1)

where z; = I/ and zo = V/C represent normal-
ized input inductor current and normalized output
capacitor voltage variables, respectively. The posi-
tive quantity b = E/v/T is the normalized external
input voltage and, the constants w; and wy are, re-
spectively, the RC-output circuit time constant and
the LC-input circuit natural oscillation frequency.
The variable u denotes the switch position function,
acting as a control input, and taking values in the
discrete set {0, 1}. The output y of the system is rep-
resented by the normalized output capacitor voltage
).

The average pulse width modulation model, as-
sociated to the above switch regulated system, is sim-
ply obtained by replacing the switch position func-
tion u by a piecewise smooth function, 4, repre-
senting the duly ratio function which is naturally
bounded by the closed interval [0,1). The averaged
normalized state variables are denoted by z; and z3.
We still, abusively, denote the average output voltage

by y.

21 = —(1—/1)(41022+b
2;’2 = (1—-/1)0.10 2] — Wy 22
y = 22 (2.2

The equilibrium point of the system dynamics,
corresponding to a constant value 0 < U < 1 of the
duty ratio function 4, is given by

b
wg(l —;:[_j)‘

(2.3)
The equilibrium values Z;(U) and Z3(U) are, both,
positive quantitities.

An approximate linearization of the average dy-
namics around the obtained equilibrium point yields
the following scalar transfer function, relating the
incremental output voltage 295 = 29 — Z(U) to the
incremental duty ratio input ps = p — U :

n=U; Zl(U)=;§('€%1U’)7 » 22(U) =

224(s)

Hs(s)

Gu(s) (2.4)

Sy

wOZl(U)sz +wis + (1 - U)2w?

The input-output representation of the linearized
‘$ystem is, evidently, non-minimum phase, as the
quantity b/Z;(U) is assumed to be positive.

Consider now the FGOCF of the average pulse
width modulated controlled Boost Converter (sec
[13] ), computed on the basis of the average nor-
malized output voltage error 7, = z, — Zy(U):

m m 2.5)
2 = =(1=p)? Wi [0+ Z2(U)] - wy 12
two (L= p) b i [ﬂiﬁz_{ﬂi.:ﬁ?z,@/ ))ﬂ}

The zero dynamics, associated to the stabiliza-
tion towards the value zero of the average normalized
output voltage error n, , is given by

o wd 2

=-5,U~=u (1-n (2.6)

The equilibrium points of the zero dynamics are

clearly given by 4 = U and 4 = 1. Both equilib-

ria are unstable as it easily follows from the phase
diagram of figure 2.

The corresponding unstable first order lineariz-
ing controller, achieving an asymptotically stable lin-
ear dynamics of the form:

72
—20wn 17 ~ wZ m

m
2

2.7)
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is then given, in transformed variables, by

N St S

2 + wi(m + 22(0))
(1= p)? w§ (m + Z2(U)) +wo (1 - 4) 8]

(2.8)

po= [(2CWn —wy)nz +win

In terms of the original average normalized state va-
riables z;, z3, the dynamical unstable controller is
rewritten as:

;‘l}zl‘ {[wl (w1 — 20wn) ~ wi(l - P)Z] 22
—(1 C [1)((4)1 o 2((4),,)(410 b4 + wo (1 e /1) b
+wd(z2 ~ Z2(U))) (29)

The controller exhibits a singularity at z; = 0. Initial
conditions for the system, and the controller state,
can always be appropriately set such that this singu-
larity is conveniently avoided.

A controller resetting strategy is now proposed
which achieves stabilization of the dynamically gene-
rated control input trajectory, u(t) ; t > to, towards
a small neighborhood of the required controller equi-
librium point g = U.

Let 0 < § < ¢ be two arbitrarily small positive
real numbers. Assume, furthermore, that the initial
value of the duty ratio function p(to) is found within
an e-neighborhood of the unstable controller output
equilibrium value U, i.e., |u(to) — U} < e.

The following resetting strategy produces an os-
cillatory motion, or quasi-sliding motion, of the dy-
namically generated control input pu(t) around the
desired equilibrium value u = U

i

if, for anyt >ty ; |p(t)-Ul=c¢,
then, set p(t*) = U - & sign {i(1))
otherwise, u(t) obeys equation (2.9)

) =

2.2 Simulation Results

Simulations were performed, for the proposed dy-
namical controller resetting strategy, on a typical
Boost converter with parameter values: L = 0.020 H,
C=20puF R=30Q and E = 15V. The desired
unstable equilibrium value for the duty ration func-
tion, generated by the dynamical controller, was set
‘- be g = U = 0.6. The corresponding equilibrium
point for the normalized average input inductor cur-
rent and output capacitor voltage was found to be
Z1(0.6) = 0.4419, Z5(0.6) = 0.1677. The linearized
closed loop dynamics is characterized by the design
parameters { = 0.85 and w, = 700.

The simulations, shown in figure 3, depict the
behavior of the controlled state trajectories as well

as the corresponding resetting activity excercised on
the controller output trajectory u(t) with U = 0.6,
§ = 0.002 and ¢ = 0.005. The average normal-
ized state variables, z; and z3, are shown to asymp-
totically converge towards the required equilibrium
values with small (chattering-like) oscillations. The
controller resetting strategy clearly portrays two sit-
uations. 1) When the states values are far away from
their required equilibrium, the control input crosses
the value p = U = 0.6, either constantly growing,
or constantly decreasing, and rapidly reaches one of
the boundaries of the neighborhood of ¢ = 0.6 at
the values for which |z — 0.6] = 0.005. 2) When the
controlled states are close to their equilibrium val-
ues, the unstable zero dynamics (2.6) approximately
describes the unstable controller behavior. The con-
troller outupt does not, by itself, cross the value
4t = 0.6, but only at the resetting instants. The duty
ratio trajectories tend to diverge from the equilib-
rium value, U = 0.6, towards one of the baoundaries
specified by | — 0.6] = 0.005, as the zero dynamics
rightfully dictates. As aresult, a quasi sliding regime
is formed for the controller output p which, on the
average, adopts the equilibrium value g = 0.6.

‘2.3 The Buck-Boost Converter

Consider the Buck-Boost converter model shown in
figure 4. This circuit is described by the following
nonlinear state equation model

21 = (1—-wwezzt+ub
23 = -(1-uwoz) —w) z2
y = zi (2.10)

where, as before, z, and z3 represent normalized in-
put current and normalized output voltage variables,
respectively. b is the normalized external input volt-
age and, w; and wo have identical interpretations as
in the Boost example. The variable u is the switch
position function, The output y is the normalized
output capacitor voltage z2.

The average pulse width modulation model, as-
sociated to the above switch regulated system, is sim-
ply given by

71 = (I-plwozz+pb
22 = —-(1~pwez; —wy 22
vy =z (2.11)

The equilibrium point of the system dynamics, cor-
responding to a constant value U of the duty ratio
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function g, is now given by

w -bU
p=U; Zy(U) = ;3%({:'}772“  5(U) = ool =T}
(2.12)

It may be easily verified that the input-output repre-
sentation of the linearized average Buck-Boost con-
verter is also non-minimum phase.

Consider now the FGOCF of the average pulse
width modulated controlled Buck-Boost Converter
(see [13] ), computed on the basis of the average nor-
malized output voltage error 7y = z3 — Za(U):

m (2.13)

2

72
(1~ p)wi(m + Z2(U)) — w1

—wabp(l — ) — i [ﬂiﬂ%‘% ?zﬁ{{ll]

The zero dynamics, associated to the stabiliza-
tion to zero of the average normalized output voltage
error is giveri by

wg U 2
0y — 1—
opw-U) 1-p)

= (2.14)

The zero dynamics is clearly unstable at the equilib-’

rium points 4 = U, and i = 1, as depicted in the
phase diagram of figure 5.

Similarly to the Boost case, the corresponding
unstable first order linearizing controller, achieving
an asymptotically stable second order linear dynam-
ics of the form (2.7) is readily obtained, in terms of
generalized phase coordinates, as,

i TR e —w w
g o= m & n(m 4 Za(0Y) [(26wn — wi)p2 + wlin
~(1 = 1)*wi(m + Z2(U)) — wo b p(1 ~ p)]

(2.15)

In terms of the original average normalized state va-
riables z;, z,, the dynamical unstable controller is
given by

1

{— [wl (wl — 2(wn) "Ug(l = ”)2] 23
WoZzZ1

H(L = p)(w1 — 2wn)wo 21 4+ wo b (1 — p)p
~wi(22— Z3(V))} (2.16)

po=

A resetting strategy, similar to the one developed for
the Boost converter, can be used to achieve stabi-
lization of the dynamically generated control input
trajectory of u around a small neighborhood of the
required controller equilibrium point u = U.

2.4 Simulation Results

Simulations were performed for a dynamically feed-
back controlled Buck-Boost converter with a con-
troller resetting policy. The same parameter val-
ues, used for the Boost converter example, were used
in this simulation example. The desired unstahl~
equilibrium value for the duty ration function, ge-
nerated by the dynamical controller, was set to be
# = U = 0.556. The corresponding equilibrium
points for the normalized average input inductor cur-
rent, and output capacitor voltage, was found to be
Z1(0.556) = 0.2, Z,(0.556) = —0.084.

The simulations shown in figure 6 depict the be-
havior of the average normalized controlled state tra-
Jectories, as well as the resetting strategy performed
on the controller output u(t). The average normal-
ized state variables z; and 2, are shown to converge,
in an average sense, towards the required equilibrium
point.

3 Conclusions

A discontinuous feedback strategy, based on suitable
resettings of an unstable dynamical linearizing feed-
_back controller, has becn proposed for the robust
stabilization of output voltages, in nonlinear ave-
rage models of dc—to-dc power converters, around
given non~minimum phase equilibrium points. The
resetting procedure simply entitles the creation of
a quasi-sliding regime for the dynamical controller
output (or, plant input variable) around the required
controller’s constant, but unstable, equilibrium value
which corresponds to the desired output plant equi-
librium point.

Many other classes of systems, and control ob-
Jectives, may benefit from the possibilities of the pro-
posed class of discontinuous (feedback) control ac-
tions. Extensions to trajectory tracking problems in
non-minimum phase systems seems to be straight-
“forward with enhanced possibilities and potential for
further applications.
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Figure 1: Boost Converter Circuit
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namics
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Figure 3: State trajectories and resettings of control
input for output voltage stabilization in the Boost
converter

Figure 4: Buck-Boost Converter Circuit
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Figure 6: State trajectories and resettings of control

input for output voltage stabilization in the Buck-
Boost converter
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