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Abstract

A pulsed feedback control strategy is proposed for
the robust stabilization of a class of multivariable me-
chanical systems in which rate constrained angular,
or linear, velocity variables are regarded as control in-
puts. The trapezoidal character of the pulsed-width
regulation policy complies with the physical limita-
tion of having corresponding acceleration variables,
i.e., applied torques, or forces, of bounded magnitude.
The proposed approach is used in the approximate
feedback control regulation of a perturbed multivari-
able differentially flat system

Keywords : Trapezoidal Pulse Width Modula-
tion, Differentially flat systems

1 Introduction

Pulse-Width-Modulation (PWM) control of dynam-
ical systems has been the subject of sustained theo-
retical and practical developments due to its inher-
ent simplicity, robustness, and widespread possibili-
ties for inexpensive hardware implementation. Early
work, in connection with the regulation of linear sys-
tems, is due, among many other authors, to Skoog
and Blankenship [11]. Developments casting PWM
as a robust feedback control technique for nonlinear
systems may be found in the work of Kuntsevich and
Cherkhovoi [5], Sira-Ramirez and coworkers {7}, {8],
[9] and Taylor [12]). The prevailing characteristic of
PWM strategies is the discontinuity of the applied
fecdback control input signal, constituted by rectan-
gular pulses of varying width. As a consequence, the
time derivatives of such train of width—varying pulses,
exhibit infinte magnitudes.

For a large class of mechanical systems, such as
nonholonomically velocity constrained systems, ve-
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locity variables (whether angular or linear velocities)
are sometimes considered as control inputs (see Bloch
et al [1] and Murray and Sastry [6]). Computa-
tion of the required torques, or forces, as ultimate
control variables is then carried out, if necessary,
by means of straightforward differentiation and sim-
ple algebraic manipulations. This procedure, how-
ever, is, evidently, not suitable for discontinuous feed-
back control techniques, such as sliding mode con-
trol and pulse-width-modulation (PWM) since in-
finite applied forces or torques would be required as
feedback contol actions. To circumvent this difficulty,
one resorts to a procedure which still regards the ve-
locity variables as control inputs but it also considers
magnitude constraints on the acceleration variables.
This alternative results only in stable convergence to
the regulation objectives, rather than asymptotically
stable behavior. From a practical viewpoint the per-
formance is, nevertheless, surprisingly satisfactory in
spite of the presence of unmodelled high-frequency
stochastic perturbation signals.

In this article a robust {rapezoidal pulse width
modulation scheme (TPWM) is proposed for the sta-
bilization of a class of mechanical systems in which
velocity variables are taken as control inputs for con-
troller design purposes.

Section 2 presents a fundamental stability result
regarding a simple integrator system feedback regu-
lated by means of a TPWM strategy. This develop-
ment is later shown, by means of an example, to be
essential for the decoupled stabilization of multivari-
able nonlinear systems. The design example considers
an application to TPWM regulation of a nonholonom-
ically constrained system constituted by a “hopping
robot”. This system has been shown to be differen-
tially flat (see Fliess et al [2] ) i.e. it is linearizable by
means of dynamical endogenous feedback. This fact
is shown to greatly facilitate the TPWM controller
design task. The performances of the proposed mul-
tivariable TPWM feedback controllers is evaluated
when the system is subject to unmodelled bounded
stochastic disturbances. Section 3 contains the con-
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clusions of the article.

2 Main Result and an Applica-
tion Example

2.1 Trapezoidal pulse width modula-
tion control of a simple scalar sys-

tem

Consider the following scalar closed loop system char-
acterized by a state variable s,

§ = w

v = —WTPWM (s) (1)

TPWM (s) =
;—;ﬁ;‘rﬂf (t - tk) sign s(tk) for t <t

< te+prls@) T

tx+p T[s(tk)] T <t

< te+7[ste)] T [1-p]
——;,—,;['5'(1{;)1'7: (t — tx — r[s(te)] T) sign s(tg) for
o+ 7s())T[1—p) <t < te+7[s(t)] T
0 for te47[s(t)]T <t < tx,+T

te+T =ty for k£=0,1,2,...

sign s(tg) for

where the function 7(s) represents the duty ratio func-
tion. Its sampled values, at every instant of time
ti, determines the width of the trapezoidal pulse for
the current inter-sampling interval (see Figure 1).
The trapezoidal pulse width is determined at each
sampling period as 7[s(tx)] T, where T denotes the
sampling interval, or duty cycle, considered here to
be constant. The duty ratio function is necessarily
bounded by the closed interval {0, 1]. However, in or-
der to avoid infinite slopes in the signal v, we need
to hypothesize a minimum positive value, or constant
lower bound, for the duty ratio function. Such a value
will be denoted by the constant, 7. We also let
the maximum control input rate to be specified by
the constant, Amax. The scalar p is then a positive
real number defining the fraction of the pulse width
7[s(te)] T on which the signal v is allowed to either
grow from zero to W, or to decrease from W to zero.
This number p, evidently, must also be bounded away
from 1. The minimum allowable value of the duty
ratio function, Tyin, is evidetly related to p, to the
sampling interval T and to the gain W by the rela-
tion:

< Amax (2)

The positive constant gain W is a design parame-
ter representing the maximum amplitude, in absolute
value, of the control input signal v.

The duty ratio function, 7(s), is synthesized as
a feedback function as follows (see Figure 2):

1 for |s|2%
(s)={ Bls| for I*;;“’»<|s|<% (3)
Trnin for is|_<_1‘?;°-

The next paragraphs describes the stable features of
the closed loop system (1),(3), along with an ampli-
tude estimate of the underlying limit cycle behavior
exhibited by s.

Propostion 2.1 The closed loop system (1) is sta-

ble. Moreover, the trajectories of s are ultimately
bounded by a vicinity of the origin given by
Tmin
Is(t)] < =+
Q] )
provided
1-p)BWT < 1 (4)
Proof

The proof of stability is quite straightforward by
simply adopting the function

V(s) = -;- s°

as a Lyapunov function candidate. According to (1),
one has, along its solutions,

V=ss < 0.

Moreover, as long as s # 0, the sets where V = 0 do
not constitute trajectories of the system for an indef-
inite pertod of time. The system is therefore stable.
Ultimate boundedness of the controlled trajectories
to a small vicinity of zero easily follows from exact
discretization of the scalar differential equation at the
sampling instants and straightforward stability con-
siderations under the prescribed suflicient conditon
(the interested reader may find the details in Sira-
Ramirez and Llanes-Santiago [10}).

2.2 The hopping robot

Consider the dynamics of a hopping robot in flight
phase (see [6]) Let the state variables be defined as
the length ! of the leg and the angular position coor-
dinates ¥ and 6, respectively, of the unit mass body
and of the leg with respect to the horizontal axis. The
leg of the robot, of mass my, can rotate with respect
to its attachment to the body. The total angular mo-
mentum is, however, conserved during such motions
( such is the nature of the nonholonomic constraint).
During the flight phase, the leg is also capable of ex-
tending and contracting within a given range, taken
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here, for simplicity, between 1 and 1 + L (see Fig-
ure 3). The control inputs v; and vy are constituted,
respectively, by the angular velocity of the leg’s rota-
tion and the rate of change of the length of the leg.
The equations describing the dynamics are given by:

v o= u
I = V2
. 2
é _ m1(1+1) v
1+m (1+1)?
(5)
The following state coordinate transformation
g g mQED?
=9 ; = T A ) z3=0 (6)
and the redefinition of the input variables
Uy = Y
2 141
T _m(+l) )

TUEm )

takes the system (5) into a 2-input, I-chain, single
generator chained system form (see [6]),

I'2='u2
i}g:;tg Uy

.i'1:u1

(®)

The system 1s evidently differentially flat since all
variables in the transformed system can be expressed
as a differential function of the linearizing outputs
y1 = z3 and y2 = 3 (i.e., as a function of the leg and
the body angular position coordinates and a finite
number of its time derivatives). Indeed,

1 = U
2
zy; =
n
3 = Y2
U = 3
Yol — Y2t
w = ZNZUN 9)

%
It is easy to see that the row relative degrees (see
Isidori [4]) of y; and y, are both equal to 1, while the
essential orders (see Glumineau and Moog [3]) are
both equal to 2. The system is not decouplable by
means of static state feedback and a dynamic exten-
sion of order 1 is required on the transformed control
input %y in order to make the structure at infinity of
the extended system coincide with the essential struec-
ture. This extension is thus necessary for the appro-
priate definition of a dynamical feedback law which
achieves decoupling of the system.

The dynamically extended version of the trans-
formed system, which is now suitable for static lin-
early decoupling fecdback, is given by

Ty =up
T3 =23 Uy

Ty =w
Eap—. (10)
where vy = 4; is a new control input to the system
and the variable u; is just an additional state variable
for the extended system. The extended control inputs
as differential functions of the linearizing outputs are
simply given by
. Y291 — P2dh
n=y ,; b= "—"—m—-

Y th

Suppose it is desired to have the linearizing coor-
dinate y; = 8, adopt the constant value O, at the end
of the flying phase, while the lenght [ is driven to a
constant value, say L/3. Appropriate error functions
s1 and s2 may be defined as

§1 = za—G:yz-G

1+my (14 L/3)?
v _mi(1+1/3)°

o T+m (1+L/3)2

sz = T2t
(12)

While the first choice is clear, it is also easy to realize,
from equation (12), that the only phisically mean-
ingful solution for I, from the condition s, = 0, is
given by I = L/3. Note that the first regulated out-
put z1 = y3 = 6 coincides with a linearizing, or flat,
output y; of the sytem, while the second regulated
output, z2 = z3, is a differential function of the flat
outputs. In the extended system, the regulated out-
put z; has relative degree two, while the regulated
output z; has only relative degree 1. Thus, an im-
posed second order dynamics on z; and an imposed
first order dynamics on z; already contain expressions
involving the highest order time derivatives of the lin-
earizing outputs y; and y,. As it will be seen, such
time derivatives of the flat outputs are solvable from
these imposed relations.

In accordance with the particular form of the
proposed regulated error functions, a second order
closed loop TPWM dynamics will be proposed for s;.
This is achieved by imposing a first order TPWM dy-
namics on a (Hurwitz) linear combination of s; and
51. A first order closed loop TPWM controlled dy-
namics suffices for the error coordinate s5.

Define then the auziliary error coordinates oy
and o4, as

Il

$1+A61 ;

g2 = 82

48] A>0

(13)
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A decoupled set of closed loop TPWM dynam-
ics guarantee desirable stability features, for s; and
se after the auxiliary error functions o, and oy are
approximately driven to zero, in finite time. Such
imposed TPWM dynamics are given by,

-W, TPWMo, ; W > 0
—Wz TPWM 02 ;W2 > 0

oy =
(14)
The preceeding closed loop dynamics lead to error
dynamics governed by

- 8.1 - W1 TPWM (81 -+ A 81)
—W; TPWM s,

gy =

- (15)

After small amplitude stable oscillations occur
around the zero level set of the auxiliary error func-
tions o1 = 0 and o9 = 0, the s; and s; coordinates
will approximately satisfy the following equations,

$3 =

.él = = 81

32=0

(16)

One may conclude that the proposed scheme guar-
antees a stable convergence of s; and sy to a small
vicinity of zero. This accomplishes, in an approxi-
mate, but efficient manner, the proposed control ob-
jectives. The leg’s angular coordinate 6 is seen to
converge towards the vicinity of the prescribed value
©, while also closely achieving the required length
I'= L/3 for the rotating leg.

By virtue of the differential flatness of the sys-
tem, the regulated dynamics (14) can be immediately
translated into requied autonomous dynamics for the
linearizing outputs y; = ; and y, = z3. Indeed, in
terms of y; and y; the equations (14) result in the
following nonlinear set of differential equations with
right hand sides specified by TPWM feedback poli-
cles.

o=
1 . . .
= [ — X g2 — W1 TPWM (yz+A(y2—6))] 0
m1(1+1/3)
+ii W2 TPWM ( T mu(i + L/3)?
G2 = =Xy~ Wi TPWM [f2+ A (y2 — ©) ]

(17)

Using the highest order derivatives §; and ¥, ob-
tained from the previous set of differential equations,
on the expressions for the (extended) control inputs
given in equation (11), one immediately obtains, in
transformed coordinates, the required extended con-
trol input vy as v; = 4 = §; and the (static) control
input u» as,

u =

1
—;—2-{[)\ T2

_mi(1+L/3)

T+m (1+L/3)2>] “
+W; TPWM [zou; + A (25— O) ] }
my (1 + L/3) )
(1 + L/3)
(18)

-W, TPWM (.’Cz +

Uy =

-W; TPWM (22

The multivariable TPWM controller thus includes a
first order dynamical TPWM compensator for the
control input u; controlling the leg’s angle and a
static feedback TPWM regulator for the control in-
put uy regulating the leg’s length. The dynamical
and statical controllers can also be expressed in the
original system coordinates as

o = Cl+m(140)° my (1402
v my (1+1)2 T4+ m (14 10)2
+W2 TPWM () ) v — Wl TPWM (o8} ]
(l +m (14 ? )
ve = -—W r— o (1 T I) TPWM o,

(19)
with
S o ()
no= <1+m1(1+1)2 uitA(0-0)
- my (1+1)? _m (14 L/3)?
: L Sl 7 Sl e

1+m (1+02 7 T4m 1+ L/3)2

(20)

2.3 Simulation Results

Computer simulations were carried out for the system
and the designed dynamical TPWM control policy. In
order to test the robustness of the proposed controller
an (unmodelled) computer generated stochastic per-
turbation signal n was added to the hopping robot
plant model. The perturbed model used for the sim-
ulations was then take to be:

1/; = n

Il = wvy+79
_m (1+1)?
1+m1(1+1) vt

where 7 is the hypothesized zero~mean pseudo white
noise.

The required leg’s angular position was set to be
© = —27/3[rad] & —2.095{rad]. The leg’s length was
taken as L = 1[mt], so that the desired final length
was L/3 = 0.333[mt]. The controller constants were
chosen as

A=5["1; Wy =8[rad/s?] ; Wy=02
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B1 = 1.4 [s/rad] ; B2 =60
Tminl = 0.05 y Tmin2 = 0.05 5 T=0.1 [S]

The value of p was set to be p = & for both TPWM
signals. Figure 4 shows the TPWM controlled trajec-
tory of the perturbed evolution of the angle § and the
leg’s length [. These variables are seen to approach
the prescribed equilibrium values, respectively, in a
stable manner and achieving the desired performance
in finite time. The original control input signals v;
and vy are also shown in this figure. The control v,
is the output of a dynamical TPWM compensator
and therefore exhibits a “smoother” behavior than
the control signal ve, which is the output of a static
feedback controller. The signal v, thus exhibit a char-
acteristic pulsed behavior.

The body angle ¥ is seen to exhibit a stable re-
sponse towards an arbitrary equilibrium point. Fig-
ure 4 also shows a sample of the perturbation signal
1. The peak-to-peak amplitude bound for this signal
was allowed to be 4.

3 Conclusions

In this article a new class of pulsed feedback con-
trol strategies, without steplike discontinuities, has
been proposed for the regualtion of nonlinear multi-
variable systems. The feedback technique, addressed
as “trapezoidal pulse width modulation” control, has
been shown to be suitable for the regulation of a large
class of nonlinear multivariable systems with limited
control input rates.

A fundamental result on the stability features of
the trapezoidal pulsed regulation, of a single integra-
tor scalar system, provides the basis for suitable error
stabilization in more complex systems, such as mul-
tivariable nonlinear systems.

The proposed scheme is specially suitable for the
solution of stabilization, and tracking, problems de-
fined on nonlinear mechanical systems in which an-
gular, or linear, velocity variables are natrually re-
garded as control input variables to the system. The
limited slope assumption on the generated feedback
input signals corresponds to magnitude acceleration
constraints and, hence, it also naturally handles re-
alistic torque, or force, magnitude limitations. The
proposed pulsed feedback controller also represents
a “smoothed” approximation strategy for traditional
pulse width modulation feedback schemes of discon-
tinuous nature.

Due to the lack of asymptotic stability features
of the fundamental scheme, feedback TPWM regula-
tion can only achieve stabilization to arbitrarily small
neighborhoods of pre-specified constant equilibrium
points. From a practical viewpoint, however, the pre-

cision features of the corresponding regulated position
variables are, quite surprisingly, highly satisfactory,
This is basically due to the averaging effects of the
imposed integration of the induced small-amplitude
velocity limit cycles.

One application example of physical flavor was
presented, along with encouraging computer simula-
tions. These included digitally generated stochastic
perturbation signals.
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Figure 4: TPWM Regulated Trajectories, Control In-
put Signals and Perturbation Noises for the Hopping
Robot

Figure 3: A Hopping Robot
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