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Abstract

In this article a robust multivariable sliding mode con-
troller solution is proposed for tracking problems asso-
ciated to well known types of mobile robots. Differ-
ential flatness of the underlying nonlinear kynematics
and dynamics of the robot is suitably exploited for the
multivariable sliding controller synthesis tasks. Natu-
ral control input smoothing is shown to be provided by
the sought decoupled nature of the closed loop system
through dynamic compensation
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1 Introduction

In recent times the theory of nonlinear control systems
has enormously benefited from the general considera-
tions derived from Differential Algebra methods applied
to systems of controlled differential equations. Funda-
mental contributions in this.area are due to Prof. M.
Fliess and his coworkers (see Fliess et al [1]-[3]. An
outstanding class of nonlinear systems is constituted by
the so called “Differentially Flat” systems. These are
niultivariable systems that can be exactly linearized by
either static or dynamical feedback. Such systems are
characterized by the existence of a set of independent
“linearizing outputs”. These in turn satisfy the property
that every variable in the system, including the control
inputs, can be expressed as differential functions of such
outputs. We recall that a differential function of a set
of indeterminates is any function which has as argu-
ments the indeterminates and a finite number of their
time derivatives. Differentially flat systems have been
studied by Fliess and colleagues in [4]-[6]. To pinpoint
the importance of differentially flat systems one may
say that they are the simplest exponents of a classifica-
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tion of nonlinear systems characterized by the fact that
they are linearizable by means of endogenous feedback
controls. Regulation laws that require no external vari-
ables in their definition. They are the simplest possible
extension of the concept of controllable linear systems to
the nonlinear systems domain. A well known example
of differentially flat systems is constituted by the large
class of nonholonomically constrained systems which are
transformable to “chained” canonical form ( see Murray
and Sastry {7].

Mobile robots of various kinds constitute an interest-
ing example of nonholonomically constrained nonlinear
multivariable systems which belong to the general class
of differentially flat systems (see the work of d’Andrea
Novel et al[8], Campion et al (9] and also, Sira-Ramirez
(10)).

In this article, using the descriptions of mobile robots
found in (8], [9] we exploit their differential flatness prop-
erties in the systematic specification of multivariable
sliding mode controllers solving tracking problems de-
fined on the two dimensional working space of several
types of mobile robots. The fundamental idea consists
in imposing closed loop discontinuous dynamics on the
tracking error variables which guarantee their asymp-
totic convergence to zero. Sliding surfaces are there-
fore constituted by stable linear decoupled differential
polynomials in the error variables which, thanks to flat-
ness, are easily expressible also as corresponding coupled
discontinuous dynamics of the linearizing coordinates.
Since the control inputs are themselves expressible as
differential functions of the linearizing coordinates, the
controller expression is immediately obtained by substi-
tuting on these expressions the higher derivatives of the
linearizing coordinates as obtained from the decoupled
stabililzing error dynamics.

Section 2 presents the derivation of multivariable slid-
ing mode controllers for wheeled robots of type (2.0),
(2.1) and (3.0) (see [8]) and the corresponding simula-
tions. All such robots are differentially flat. Section 3
contains the conclusions.
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2 Multivariable Sliding Mode
Control of Mobile Robots

In this section we present a systematic approach for the
design of multivariable sliding mode controllers for the
regulation of mobile robots of several types. The control
objective will be constituted by the feedback solution of
a tracking problem constituted by the need to follow
specific curves in the working plane of the robot. In
particular we explore the task of following circles and
straight lines. The method, however, is of general value.

2.1 Mobile Robot Type (2,0)

Consider the kynematic and dynamic model of a mobile
robot type (2,0):
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where r and y are the position coordinates on the plane
of the center of mass of the robot and 8 is the heading
angle. n, is the instantaneous velocity in the heading
direction while 5, is the instantaneous angular veloc-
ity of the coordinates fixed to the body of the robot.
The control inputs v; and v, represent, respectively, lin-
ear acceleration or angular accelerations (equivalently,
pushing forces and rotation torques).

The system (2.1) is differentially flat with linearizing
outputs given by the body position coordinates z and
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The system (2.1) is found not to be decouplable by
Means of static feedback. It is easy to see that by per-
formmg a dynamic extension of the control input vy,

the extended system becomes decouplable by static feed-
back. In other words the dynamical extension of v; ren-
ders identical values for the vector relative degree and
the vector of the essential orders of the extended sys-
tem (see Glumnieau and Moog {11]). Consider then the
extended model of the type (2,0) mobile robot,
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The new control input variable u; can also be placed in
terms of the linearizing coordinates z and y. For this one
simply derives the previously found expression in (2.2)
for the original control input v;. One then obtains:
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The extended system (2.3) is now decouplable by
means of static feedback. For this note that the vec-
tor relative degree of the linearizing coordinates is given
by [3,3] and the essential orders are also [3, 3].

It is desired to build a regulator which makes the robot
automatically track a circle of arbitrary but fixed radius
R at a constant angular velocity ¢ = Q with respect to
the center of the circle. Evidently ¢ = arctan(z/y).
The set of sliding surfaces, written in terms of the lin-
earizing outputs, that accomplish the described tracking
task is simply given by,

sifz,y) = P+y*-R¥=0
sozy) = LY _q=o (2.5)
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The relative degree of s, is three while that of s is only
2. A third order discontinuous dynamics must then be
imposed on s; while a second order discontinuous dy-
namics must be imposed on s, which guarantee decou-
pled asymptotic convergence to zero of such coordinates.

Let the desirable dynamics for s; and s; be respec-
tively given by,

sga) + 85 + A6 + Wysignoy =0

83 + $s2 + Wa sign o3 (2.6)
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where

§1+B851+As1 5 B,A>0
S2+52 ; 6>0

it

g1
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It is‘seasy to see that if oy and o, converge to zero in
finite time then both s, and s, asymptotically converge
to zero with dynamical features entirely determined by
the design coefficients 8, A and ¢. That such is the case
may be immediately realized since equations (2.6) are
equivalent to

oy =-Wsigne, ; 62=-Wsigno, (2.8)

Substituting (2.5) into (2.6), and using the extended
system equations (2.3), one obtains the feedback expres-
sions for u; and v, in terms of the linearizing coordinates
z, y, and their first and second order time derivatives
( i.e., position, velocity and accelerations must be mea-
sured along the z and y axis).

The multivariable feedback controller components
may be readily found from the expressions (2.2) and
(2.4) after substitution of the highest derivatives of
and y obtained from (2.6). In order to save space we
shall not reproduce the corresponding expressions here.

2.1.1 Simulation results

Simulations were performed to assess the closed loop be-
havior of the robotic system. The simulated system was
constituted by a perturbed version of the system model
in conjunction with the derived discontinuous feedback
controller.

In order to test the robustness of the proposed feed-
back control scheme, an unmodelled, bounded, stochas-
tic perturbation signal v, was added to the original sys-
tem (2.1)
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A second perturbation signal v was also included in the
equation for the extended control input o, i.e.,

Uy =up+ vy (2.10)
It should be pointed out that the uncertain perturbation
signals, here considered, helong to the class of matched
uncertain signals affecting the system behavior. It may
be shown, however, that even if the perturbation inputs
are not matched, as long as the time derivatives of such

perturbation signals remain bounded, then the above
discontinuous feedback control scheme still exhibits re-
markable robustness features. This is due to the fact
that the proposed control scheme is actually based on
a particular class of input-output representation of the
system related to the linearizing outputs. It is known
that in such a kind of context the traditional state space
matching conditions have no further meaning.

Figure 1 shows the controlled perturbed evolution of
the position coordinates of the robot converging towards
the specified circle on the plane. The tracking errors s,
and sz, shown in Figure 2 are seen to also converge to
zero in an asymptotic and robust manner.

2.2 Mobile Robot Type (2,1)

Consider the dynamical model of a type (2,1) mobile
robot
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It is easy to show that the system is differentially flat
with linearizing coordinates represented by z, y and 3.
Indeed, all variables in the system may be written solely
in terms of differential functions of these variables
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The system is not decouplable by means of static state
feedback. A dynamical extension of the input v, yields
a statically decouplable extended system. We thus con-
sider the system (2.11) along with the integrator equa-
tion,

1.11 = Vs

(2.13)
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The new input is also a differential function of the lin-
earizing coordinates,

(#2 + 22 + §3 + yy'?) (22 + #?)
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In this instance it is desired to synthesize a regulator
such that the mobile robot follows the straightline y = z
in the working plane, with constant velocity. The error
coordinates that capture the essence of such a tracking
problem are given by

Vg =

(2.14)

s = z—y=0
s = 2249 -0%=0
sg = B=0 (2.15)

We impose the following sliding mode dynamics on the
error surface coordinates

s 4215+ Bs1+ Wi signoy =0
So+4 P+ Wysignoy =0
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where

o3 = §3+as3
(2.17)
As before, it is easy to see that if o, , 0, and o3
converge to zero in finite time then the errors sy, s,
and s3 asymptotically converge to zero with dynamical
features determined by the design coefficients. It is easy
to check that the objective is satisfied since equations
(2.16) are equivalent to

or=§1+A8148s1 ; o2 =33+0s2

o2 = -W, sign (4]
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Substituting (2.15) into (2.16), and using the system
equations (2.13), one obtains the feedback expressions
for ¥; and v3 and vy in terms of the linearizing coordi-
nates z, y, A and their time derivatives

The multivariable feedback controller components
may be readily found from the expressions (2.12) and
(2.14) after substitution of the highest derivatives of
and y obtained from (2.16).

2.2,1 Simulation results

Simulations were performed to assess the closed loop
behavior of the system. The system equations used for

the simulations were again constituted by a matched
stochastically perturbed version of the system model in
conjunction with the derived sliding mode feedback con-
troller.

Figure 3 shows the controlled perturbed evolution of
the position coordinates of the robot converging towards
the desired straight line defined on the working plane
of the robot. The tracking errors s; and s,, are also
shown, in Figure 4 to converge to zero in an asymptotic
and robust manner.

2.3 Mobile Robot Type (3,0)

We now summarize the developments leading to a mul-
tivariable sliding mode controller design for a mobile
robot of type (3,0). The tracking problem consists in
following the straigh line y = z on the plane with con-
stant velocity Q. As before the procedure exploits the
differential flatness of such a mobile robotic system,
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Assessment of differential flatness
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Discontinuous decopuled closed loop error dy-
namics
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Existence of sliding motions

6y = —-Wsignoy ; o2=-~Wisignos ;
o3 = -—Wjsignos (2.24)
2.3.1 Simulation results

Figure 5 shows the controlled perturbed evolution of the
position coordinates of the robot converging towards the
desired straight line defined on the working plane of the
robot.

3 Conclusions

Differential flatness properties of multivariable nonlinear
mobile robots can be advantageously exploited for the
discontinuous feedback design of linearizing controllers.
The enhanced robustness features of the closed loop sys-
tem make the proposed approach particularly attractive.
In this article several types of wheeled mobile robots
have been shown to be differentially flat and the multi-
variable sliding mode controller design has been carried
out and implemented through computer simulations in-
cluding bounded stocastic perturbation signals of un-
modelled but matched nature.

An interesting area of possible further research is con-
stituted by a study of the possibilities of using sliding
mode controllers on the class of non-differentially flat
systems.
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Figure 1: Closed loop trajectory of sliding mode con- .
trolled wheeled robot type (2,0)
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Figure 2: Closed loop behavior of tracking errors for

type (2,0) robot
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Figure 3: Closed loop trajectory of sliding mode con-
trolled wheeled robot type (2,1) robot

Figure 4: Closed loop behavior of tracking errors for
type (2,1) robot
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Figure 5: Closed loop trajectory of sliding mode con-
trolled wheeled robot type (3,0) robot
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