When are tasks “difficult” for learning controllers?
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Abstract

Some control task, formerly believed to be diffi-
cult and used to demonstrate neural network un-
supervised learning, can be accomplished with very
simple controllers. There seems to be no learning
method that discovers these controllers. This fail-
ure could be attributed to the learning algorithm
or to starting with overly complex controller struc-
tures. We suggest using the probability that ran-
domly selected controller is successful as measure of
learning difficulty. To limit the size of the space of
possible controllers we use Fliess’ classification of
control problems into flat and non-flat. We illus-
trate the procedure on easy and difficult variants of
the pendulum control task.

1 Introduction

Several nonlinear control problems have become
popular among machine learning researchers, par-
ticularly those using neural networks, for demon-
strating learning methods. The cart-pole and the
truck backer-upper first studied in this context by
Widrow and coworkers have become classic exam-
ples [11] [8]. The learning tasks associated with
such nonlinear control problems are often intu-
itively classified as difficult because human beings
need a substantial amount of practice, based on trial
and error, before they become capable of executing
the proposed control task to a reasonable degree of
satisfaction. One finds, however, that some of the
simplest imaginable controllers: linear or piecewise
linear state feedback controllers deliver very good
regulatory behaviour for the closed loop dynam-
ics of these systems. Moreover, once the controller
structure has been decided upon, the probability
that a random choice of the parameter values for
the structure will result in a successful controller
is surprisingly large. For example we have shown
that a simple random search in coefficient space for
a linear feedback controller is more effective, at least
for the cart-pole and the articulated truck backer-
upper experiments, than any of the known learning
methods [5] [6].
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The simplicity of state feedback solutions, and
the apparent ease with which they can be obtained,
seems paradoxical when compared with the consid-
erable computational effort demanded by the un-
supervised learning methods. It seems worthwhile
to investigate this situation. What is the reason
for the poor performance of the learning methods?
Are the methods at fault?, or is it that the initial
range of potential controllers is far too large, i.e.
the allowed controller structures are far too com-
plex. To decide this question it would be helpful to
have a way of quantifying the inherent difficulty of
a learning task.

In this paper we discuss a measure of difficulty
based on linear or piecewise linear solutions to con-
trol tasks. Because of space limitations we confine
the discussion to pendulum systems. We already
discussed linear and piecewise linear solutions to re-
verse parking of vehicles elsewhere [6] [4].

2 Volume of controllers in pa-
rameter space

* A structure defines a family of controllers. Particu-

lar sets of values of the variable parameters instan-
tiate the individual controllers in the family. Fol-
lowing the ideas of Schwartz et al. [10] we use the
relative volume in parameter space occupied by the
set of successful feedback controllers as a measure
of learning difficulty. This measure defines a prob-
ability on the space of controllers of given struc-
ture. It is the probability that a randomly chosen
controller will meet a specified performance level.
Each task needs a clear specification of the perfor-
mance criteria for discriminating between successful
and unsuccessful controllers. The most important
question, however, for obtaining actual values of the
probability is how to choose a structure of sufficient
generality without being unnecessarily complicated.
We find an answer in Fliess’ classification of nonlin-
ear control systems into differentially flat and dif-
ferentially non-flat [2] (3] [9].
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2.1 Differentially flat and non-flat
systems

Differentially flat systems are best represented by
the class of systems that are linearisable to decou-
pled controllable systems by means of endogenous
feedback, that is: feedback form internal variables.
The inherent linearity of flat systems may then be
exploited by means of either a single linear control
law or, alternatively, a piecewise linear control law
that efficiently compensates for the system nonlin-

" earities and manages to stabilise the system to its
desired set point. It has been argued that most of
the commonly studied nonlinear control system ex-
amples are indeed differentially flat. For instance,
the class of nonlinear Hamiltonian {conservative)
systems are, generally speaking, “flat”. A large
class of mechanical systems with nonholonomic ve-
locity constraints are also differentially flat. The
class of differentially non-flat systems is made up
by systems satisfying the so called strong accessibil-
tly property and they are essentially uncontrollable
systems. Some non-flat systems can be reduced to
differentially flat systems, in an average sense, by
adding an independent high frequency control in-
put.

Flat systems are characterised by a set of linearis-
ing outputs whose number equals that of the control
inputs. Every variable in the system, including the
control inputs, are expressible as a differential func-
tion of the linearising outputs. A differential func-
tion is a function of its variables and a finite num-
ber of their time derivatives. The variables to be
regulated are therefore functions of the linearising
outputs and a finite number of* their time deriva-
tives. A linear feedback policy is easily seen to al-
ways stabilise the linearising outputs independently
of the distance of the actual, or initial states to the
required equilibrium conditions.

3 Examples

3.1 The cart-pole experiment

The cartpole is a modified form of balancing a
broomstick. The lower end of a pole is hinged to
a cart in such a way that the pole can only swing
in a vertical plane parallel to the direction of mo-
tion of the cart. The objective is to balance the
pole by pushing the cart back and forth. In the
most common version of the experiment, described
by Barto, Sutton & Anderson (1983) [1], the cart
runs on a track of limited length. Balancing fails
when the inclination of the pole exceeds preset lim-
its, or when the cart hits the stops at the end of
the track. A more demanding version of the cart-
pole experiment requires the controller to balance
the pole and bring the cart back to the centre of
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Figure 1: Cart position and pole angle vs. time for
the best controller in the continuous force regime.
Force update interval Atp = 0.02s. Initial con-
dition: z = Im, v = 1m/s, 8 = 0.1rad and
w = 0.2rad/s. RMS values over first 1000s: & =
0.0076m, 6 = 0.0768rad

the track. The state vector of the cartpole has four
components: the pole angle 8 with the vertical, the ™
angular velocity w, the cart position z, and its ve-
locity v. The dynamic equations of the system can
be found in [5]. A linear state feedback controller
that generates a control force F of the form

F = k(wef + wow + wez + wyv) = k(w-3) (1)

does a very good job in balancing the pole and cen-
tring the cart, as the trial run in Fig. 1 illustrates.
The weight vector 1w = (wy, wy,, wg, wy)T is of unit

. length.

A simple qualitative analysis shows that in a suc-
cessful controller all the components of the weight
vector must be positive. We can measure the de-
gree of difficulty of the problem by the fraction
of the area of the positive quadrant of the four-
dimensional unit sphere in weight space that yield
satisfactory controllers. The degree of difficulty de-
pends of course on the initial release condition. The
closer this is to equilibrium the easier is the task.
For the reasonably difficult initial condition of the
trial run in Fig. 1 about 0.3 % of the randomly
selected controllers had not failed 5 minutes after
release. In other words the most unsophisticated
learning method of testing random controllers will
succeed in producing a successful controller after
330 trials on average. For a bang-bang control force
the task of not failing is easier but the quality of the
control is much worse [5).
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3.2 The swingless crane

Another control problem involving the pendulum
dynamics is that of the swingless crane. The sim-
plest form of the task is the loading bridge config--
uration. A carriage runs on an overhead rail, and
a load hangs on a rope attached to a carriage. The
load moves in the vertical plane below the rail and
the control task is to move the load from an initial
position (z;, z;) to a final target position (zj, z7) in
minimum time and without overshoot. This is to
be achieved by moving the carriage along the rail
and by pulling in or releasing rope. The dynamic
equations for the loading bridge are:

. (1 — m)ac, cosd
2 1—pycos? . )
_(pg(2Lésin 9~ (L — L6%)cosf) + g)sin8
1— pycos?d
P (1= p)acs + pi(E — L6% — gcosB)sin @
¢ 1~ prcos?d
(1 — p1)2p; L0 cos 8 3)
1-- pycos?d

L = agt) “)

41 i8 the reduced mass my /(m.+my) of the load, 8
is the angle of the rope with the vertical (measured
clockwise), L is the free length of the rope. The
controls are the reduced force ac; = Fe/(mi + m.)
applied to the carriage and the lengthwise acceler-
ation ay of the rope.

The problem is flat [2]. The following linear state
feedback controller achieves good control:

500 — 06 — 1.4(z, — z) — 4%
(2-2)-2L

ez

ar

(5)
(6)

Figure (2) shows a sample trajectory of the load.

i

8.3 Kapiza’s pendulum

The Kapiza pendulum is a variation of the cartpole
experiment that is non-flat [3]. Instead of balancing
the pole by a linear horizontal motion of the pole’s
base, only vertical up and down motion is allowed.
It is known that an inverted pendulum can be pre-
vented from falling over by a high frequency (much
higher than the natural frequency of oscillation of
the pendulum) oscillatory vertical motion forced on
the base of the pole [7]. This is an example of the
class of non—flat problems that can be reduced, in
an average sense, to a flat system by adding an in-
dependent high frequency control input. Given the
assurance that stabilisation is possible, the control
objective is then to apply a variable force to the
base of the pole so as to keep it around a fixed ver-
tical position while maintaining the pole in the up-
right position. The dynamic equations for a Kapiza
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Figure 2: Load trajectory obtained by linear state
feedback. The load is moved from a point 9 m below
the rail and 4m to the left oft the centre to a point
3m (z;) below the rail and 4 m (z;) to the right of
the centre. There is no residual oscillation. m,
200 Kg and m; = 2000 Kg

pendulum of length 2L and mass my:

~  3sin8(a; + 6% Ly, cos §)

L(4 - 3ppsinfcos ) . @
. _ 4(a; +6%Ly, cosb)
T, sin?e ()

where p, is the reduced mass m, /(m, 4+ m.) of the
pole. The mass of the pole mounting and driv-
ing gear is m,. The controller applies the force
F = a;(mp + m.) to the base of the pole. To
simulate the system we have used Euler integra-
tion with integration time step A = 0.02s, and that
was also the control feedback interval. The system
parameters were mp, = 1Kg, m. = 0, L = 1m,
g = 9.81m/s. There is indeed a structure for piece-
wise linear controllers that keeps the base of the
pole near the origin and prevents the pole from
falling over. We derived that structure from qual-
itative analysis of the pendulum dynamics. Ac-
ceptable parameters were found by experimenta-
tion. Remarkably, we did not have to rely on an
additional high frequency input, however the tra-
jectories of the controlled pendulum are oscillatory.
The best controller we found is:

12g0(8(z — .54) + )
a, = { if((66 < 0)A(4]8] < 18])) v (8] < 0.001)
~12g otherwise
9)
The system is released from the initial configu-
ration z = —1.0m, 2 = 0.0m/s, 8 = 0.5rad, and
6 = 0.0rad/s. Figure 3 shows the first 30 seconds

of a sample trajectory. The residual root mean
square error for the position and angle, measured
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Figure 3: Sample trajectory for balancing the
Kapiza pendulum

between 30 and 60 seconds after release, are 0.26m
and 0.027rad respectively. While the controller is
not sensitive to small changes in the numerical con-
stants used in the control law, we were unable to
improve on this result with a reasonable amount of
experimentation..

4 Conclusion

The classification of dynamic systems into differen-
tially flat and non-flat is useful for constraining the
structure of learning controllers. Since many sys-
tems of practical importance turn out to be flat,
characterising the difficulty of the learning prob-
lem by the volume of good controllers in parameters
space leads to meaningful discrimination of learning
control tasks. The set of task related to the control
of a pendulum discussed in this paper, covering the
range from easy (cart-pole) to difficult (Kapiza pen-
dulum), clearly illustrate this.

References

(1] A.G. Barto, R.S. Sutton, and Anderson C.W.
Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE
Trans. Sysi., Man., Cybern., SMC 13:834-846,
1983.

{2] Michel Fliess, Jean Levine, Philippe Martin,
and Pierre Rouchon. Sur les systems non lin-
eaires differentiellment plats. C. R. Acad. Sci.
Paris, Serie 1, 315:619-624, 1992.

(3] Michel Fliess, Jean Levine, Philippe Martin,
and Pierre Rouchon. Defaut d’un systeme non

lineaires et commande haute frequence. C. R.
Acad. Sci. Paris, Serie 1, 316:513-518, 1993.

[4] Shlomo Geva and Joaquin Sitte. One neu-
ron valet parking. In Proceedings of the IEEE
International Workshop on Emerging Tech-
nologies and Factory Automation (ETFA’92),
pages 277 - 282, Melbourne, 1992.

[5] Shlomo Geva and Joaquin Sitte. A cartpole ex-
periment benchmark for trainable controllers.
IEEE Conirol Sysiems Magzine, 13(5):40-51,
October 1993.

[6] Shlomo Geva and Joaquin Sitte. Simple con-
trollers for reverse parking of articulated ve-
hicles. IEEE Transactions on Industrial Elec-
tronics, 1994. accepted.

[7] L.D. Landau and Lifshitz E.M. Mechanics.
Pergamon Press, 1969.

[8] D Nguyen and Bernard Widrow. The truck
backer-upper: an example of self-learning in
neural networks. In R.S. Sutton W.T. Miller
and P.J. Werbos, editors, Neural Networks for
Control, pages 287-299. 1990.

Pierre Rouchon, Michel Fliess, Jean Levine,
and Philippe Martin. Flatness and motion
planning: the car with n trailers. In Proceed-
ings of the 2nd European Conirol Gonference,

Groningen, 1993. "

[10] D.B. Schwartz, V.K. Samalam, Sara A. Solla,
and J.S. Denker. Exhaustive learning. Neural
Compulation, 2:374-385, 1990.

(9

[11] Bernard Widrow. The original adaptive neural
net broom-balancer. In International Sympo-
sium on Circuils and Systems, pages 351-357.
1EEE, May 1987.

2422



