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Abstract

A sliding mode feedback control scheme, of dynamic
nature, is proposed as an eflicient alternative to ro-
bustly deal with the intrinsic tracking problem associ-
ated with every Model Based Predictive Control strat-
egy. The results apply to nonlinear single-input single-
output perturbed systems for which the tracking of
a prespecified desirable output Tefereénce signal is re-
quired. The scheme is shown to handle efficiently large
modelling errors and unmatched perturbation inputs

1. Introduction

The Model Based Predictive Control (MBPC) tech-
nique has received sustained attention, from both a
theoretical as well as an applied viewpoint, ever since
it was introduced by Richalet et al [1], 15 years ago.
The technique has been developed over the years by
many authors, specially by Clark et al [2]-[3], Richalet
[4], Richalet et al {5], Bitmead et al [6]. Predictive
control has received fundamental impetus towards its
applicability in the chemical process industry by the
research efforts of Morari and his coworkers {7]- [9]
and Garcia and Morari {10]. On the theoretical side,
extensions to the nonlinear case, in fruitful combina-
tion with the concept of system inversion, have been
presented by Abu el Ata and Fliess {11] and Abu el
Ata et al [12]. A recent book on the subject is that
by Soeterboek [13]. More recently, interesting devel-
opments, related to nonlinear optimal control theory,
have been presented in a series of works by Mayne and
Michalska [14]-[16].

In this article we develop an approach that uses an
advantageous combination of dynamical sliding mode
control (see Sira-Ramirez [17]) and input-output sys-
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tem inversion (Fliess [18]) in MBPC schemes. These
techniques naturally blend together to yield a robust
solution to the nonlinear output tracking problem as-
sociated with any predictive control scheme and de-
fined within a prespecified prediction interval. Initial
steps in this direction have also been taken by Sira-
Ramirez and Fliess [19].

In section 2 a general description of the Predic-
tive Functional Control problem using a dynamical,
i.e., chattering—free, sliding mode control approach is
presented. Section 3 contains an illustrative exam-
ple along with digital computer simulations. Section 4
presents conclusions and suggestions for further work
in this area.

2. Robust Predictive Control via a Dynamical
Sliding-Mode Strategy

2.1. A sliding mode control result for scalar
perturbed systems .
Propostion 2.1 Let W and N represent strictly pos-
ttive quantities and lel “sign” stand for the signum
function. Suppose v is a scalar bounded perturbation
signal such that |v| < N. Then, the perturbed scalar
discontinuous system : '

w=v—Wsignw (Y

globally ezhibits a sliding regime ({20]) on w =0, pro-
vided W > N. Furthermore, any trajectory stariing
on the initial value w = w(0), at time t = 0, reaches
the condition w = 0 in finite time T,.. An estimate of
the reaching time 1, is given by :

lw(0)]
W N (2
Proof Immediate upon checking that globally :
w dw/dt < 0 whenever w # 0, and W > N. This
is a well known condition for the existence of a sliding
regime {20]. The estimation of the reaching time in (2)
is immediate upon integration of (1) and consideration
of the most disfavorable perturbation case.

T. <

148 -



2.2. Predictive Functional Control via Dy-
namical Sliding Modes

Consider a nonlinear n-dimensional single-input
single-output dynamical system, expressed in GOCF
(18]

m o= M
T = Mm
(3)
m = ¢(nu,.. .,,u(")) +v
Yy = Mh

where the scalar signal function v comprises all known
information about external bounded perturbation sig-
nals and an assessment of possible modeling errors.
Note that a particular advantage of the GOCF is that
perturbation signals are always maiched with respect
to the highest derivative of the control input, u(®),
which is taken as the effective control input signal in
any dynamical feedback regulation scheme. This fact
avoids the need for complying with the well known
matching conditions, set almost 25 years ago in the
work of Drazenovic [21].

The integer « in (3) is considered to be a strictly
positive integer. For systems which are ezactly input-
output linearizable, i.e. where a = 0, (sec Isidori [22]),
the same developments presented here are still apph-
cable, except that, in order to obtain our proposed
chattering—free responses, a first, or higher, order dy-
namical eztension of the system becomes necessary
(the concept of dynamical extension can be found in
the book by Nijmeijer and van der Schaft [23])

The signal v is assumed to satisfy :

sup v < N (4)

Let yr(t) be a prescribed reference output function,
assumed to be sufficiently smooth and defined over a
given prediction interval [0,Tp]. Such an interval is
determined below, in section 2.3.

Define a tracking error function, e{t), as the differ-
ence between the actual system output, y(t), and the
output reference signal, yr(t):

e(t) = y(t) — yr(?) (5)
We then have :
() = np-y@(t) ; 0<i< -1 (6)
€(t) = =y = c(nu, ., u@) — g 4y

Defining e; = e, (i = 1,2,...,n), as compo-
nents of an error vector e, we may also express the
tracking error system (5)—(6) in GOCF as :

€1 = e
éz = €3
(7N
én = cle+Er(t),uu,...,ul®)y—yP)+v
€ = €
with :
ént) = ool (vr®,sR®), 15 V®)
e = col(e,ez,...,en) (8)

The model-based predictive controller synthesis enti-
tles the unambiguous specification of the (desired) sys-
tem output tracking error, e(t), within the specified
prediction horizon [0,T'p]. This task is easily accom-
plished by prescribing a reduced order linear dynami-
cal tracking error behaviour, which is known to asymp-
totically converge to zero, i.e. we specify the desirable
tracking error dynamics as

& = e
e = e3
(9)
€n_1 = —Mp_1p_y— - —me;
€ = €1
where the set of real coefficients {m;,...,mn_1} is

such that the following (characteristic) polynomial, in
the complex variable “s ”, is Hurwitz:

p(s)=s""1 ¢+ Muo18" 24 4 mas+ my (10)

We denote by u the smallest real part, in absolute
value, of all the complex stable roots of the polynomial
equation p(s) = 0, associated with (10). The param-
eter u actually represents the smallest time constant
associated with the asymptotical exponentially stable
decay of the controlled tracking errror response, un-
der ideal sliding mode conditions (see [20]). Such a
design parameter is used in the computation of the cur-
rent prediction interval [0,7p) and, evidently, it may
be specified a priori during the design stage (see also
section 2.3).

The prescription of the desired linear tracking error
dynamics (9), in turn, uniquely specifies a correspond-
ing sliding surface coordinate function on the output
tracking error phase space of the adopted model. In
order to achieve such a desirable tracking error dynam-
ics the coordinate e, must satisfy, acording to (7) and
(9),

€ = —Mp_1€pn_1 — - — M€ (11)

Motivated by this requirement, we next define an aux-
iliary scalar output variable w, in terms of the output
tracking error coordinates e; ; (i = 1,...,n) as,

wW=€en+Mmy_1€n_1+- - -+me; (12)
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Note that if the auxiliary output function w is driven
to zero by means of a suitable control action, say, in
finite time, then the desired error dynamics, specified
in (9), is accomplished, and asymptotic exponential
stability of the tracking error towards zero is obtained.

A dynamical discontinuous controller inducing a ro-
bust sliding motion on the zero level set of the pro-
posed sliding surface, w = 0, may be found by stan-
dard system inversion performed on the unperturbed
version of system (7) (i.e. by setting v = 0 ). Con-
sider then the following dynamical feedback controller
in terms of an implicit ordinary differential equation
with discontinuous right hand side,

n-1
clrteuun,..., u("‘)) - y‘(:) + Z mieis1
i=1

=-W sign (i m,-e;) (13)

i=1
It easily follows, by taking the time derivative in (12),

and using (7) that the controller (13) determines the
following evolution of the auxiliary output function w:

n

w=v— W sign (Zm,—eg) =v—-Wsignw (14)
i=1

According to the result of Proposition 2.1, the con-

trolled values of w go to zero in finite time and a sliding

regime can be indefinitely sustained on the condition

w =0, provided W > N.

A truly variable structure controlleris obtained from
(13) since on each one of the regions: w > 0, and
w < 0, a different dynamic feedback controller “struc-
ture” acts on the regulated system. The correspond-
ing implicit differential equation (13) is to be indepen-
dently solved for the controller u, on the basis of knowl-
edge of the predicted error vector e and the vector of
future desired output time derivative functions £gr(t),
computed, in turn, from knowledge of the future out-
put reference trajectory yr(t). Under the additional
assumption that, locally, dc/du(®) is non zero in (13),
then no singularities, of the impasse points type need
be locally considered ({12]). If singularities do arise
they may be handled by the introduction of appropri-
ate discontinuities on the dynamical controller output
u (see Example 3.1).

Note that for @ > 1, the obtained sliding mode
controller output u is actually continuous, rather than
bang-bang. This result is nontypical in sliding mode
control where, traditionally, bang-bang inputs, and its
associated chattering output responses are usually ob-
tained (See [20]).

After convergence to zero of the output tracking er-
ror, the dynamical controller exhibits the following re-
maining dynamics :

c(br .. u@) = ) (15)

It is assumed that the nonlinear time-varying dy-
namics (15) is globally stable for the given desired
output reference function yg(t). The dynamics (15)
is, evidently, coincident with the zero dynamics (See
Fliess [24] and also [22]) for those cases in which the
desired value of the output function yg(?) is identically
zero, or a given constant. In such cases, our previous
assumption implies that the given system is locally,
or globally, minimum phase [22] (see also [23]). In this
last class of systems, an asymptotically stable response
is obtained, as a solution of (15) for the control input
u, towards a stable equilibrium value.

2.3. The prediction interval

The above procedure is evidently based on the va-
lidity of the available mathematical model for the sys-
tem. Such a mathematical model, as usual, may be at
variance with respect to the actual system behaviour.
In using the predictive dynamical discontinuous con-
troller on the actual system, one may generally obtain,
at the end of the prediction horizon, a nonzero tracking
error, or a nonzero sliding surface coordinate function
value. These nonzero values are unknown functions of
the model mismatch. The predictive control technique
proposes then a number of procedures for obtaining an
improvement, in the actual closed loop system behav-
ior, for the next prediction interval, [Tp,,7",] (see [1],
(4], BD-

A reasonable choice for the setting of the new pre-
diction horizon [T'p, T'p] may be devised as:

o _ w2
T, = W= N + P (16)
i.e. the new prediction interval is comprised of the
reaching time to the sliding surface, w = 0, computéd
from the sliding surface value based on the new reset
tracking error initial conditions (see equation (12) ),
plus twice the slower time constant of the impossed
linear error dynamics (this choice, roughly speaking,
guarantees at the end of the new prediction horizon a
theoretical decrease, in absolute value, of the slowest
tracking error mode to about 13% of its initial value
at the hitting of the proposed sliding surface).
The process described next is systematically re-
peated at the end of each prediction interval. Such
process entitles,

1. Assessment of the actual values of the tracking er-
ror, or of the proposed stabilizing sliding surface,

2. Re-initialization of the desirable error dynam-
ics in accordance with the obtained actual track-
ing error performance (this step may include a
redesign of the parameters defining the desired
tracking errors)

3. Calculation of the new prediction interval and, by
direct system inversion techniques, calculation of
the required sliding mode control policy.
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4. Implementation of the reassessed control policy,
and monitoring of the obtained response during
the adopted planning horizon.

3. An llustrative Example

Example 3.1 A d.c. molor ezample

Consider the following nonlinear model of a stator volt-
age controlled d.c. motor (see [22})

£ = —'&11+£—£22U
L, L. L,
. F K
o = —7 z9 + 7 ryu
y = 17

where z; represents the armature circuit current and
z4 is the angular velocity of the rotating axis. V; is the
fixed voltage applied to the armature circuit, while u
is the field winding input voltage, acting as a control
variable. The constants R,, L, and K represent, re-
spectively, the resistance, the inductance in the arma-
ture circuit and the torque constant. The parameters
F and J are the viscous damping coefficient and the
moment of inertia associated with the rotor.

An input—output representation of the system is ob-
tained by elimination of the state vector (see Diop [25)
for general results)

. RF_(F R\ . KV
A L,Jy"(J+L,)y+L,J“
K* , &[. F
Ly +;[y+7y] (18)

Suppose it is desired to track a known angular velocity
profile, or reference trajectory, yr(t).

The zero dynamics for y = 0 degenerates into the al-
gebraic condition u = 0. Since a common objective in
velocity control is to track reference trajectories that
eventually include constant angular velocities, we con-
sider the zero dynamics of the system associated with
such constant values of y. Such a zero dynamics is
readily obtained after setting the outut y to a con-
stant equilibrium value, say Q, and setting to zero the
output derivatives y ; y. Hence, one obtains

R. KV.

2
. , K 3
U— —u u’ -
L,

oL F" TT.J"

=0 (19)

Aside from the trivial equilibrium point u = 0, there
exists, for every constant angular velocity £2, two other
phisically meaningful equilibrium points for the zero
dynamics, provided V2 > 4 R, FQ? We denote here
such equilibria by ¥ = U. The minimum or non-
minimum phase nature of a particular equilibrium
point u = U depends, respectively, on whether the

quantity: R,F — K2U? exhibits a positive or negative
value.

A GOCEF representation for the tracking error dy-
namics, with state components defined by e; = e =
z7 — yr(t) and e; = £ — yr(t), is readily obtained as

él = €2
. R.F F .
b = - v - (54 F) €t in)
KV.  K?
o A wiCRE LR
U . F ..
+2 [ex 4 dn@ + 5 e1 4 va@)] - a0

(20)

A predictive dynamical sliding mode controller is
next designed by considering the sliding surface w as,

w=ey+m e (21)

Note that such a sliding surface is a nonlinear, time-
varying, input-dependent sliding manifold of the form

F K .
w= -5 22+7 z; u—yr(t)+m; (z2 — yr(t)) (22)

Imposing the dynamics, w = —W sign w, on such a
sliding surface coordinate w, one obtains the follow-
ing dynamical predictive controller by inversion of the
tracking error system equations,

fe2 + 7r() + T (e1 + yr(®))]

(B @t mo)+ (§+F) €+ in)

KV,  K? .
“ITtt LT (e1 +yr(t)) u* + gr(t)
my ez ~ Wsign w} (23)

Simulations were performed for a .d.c. motor with
the following parameter values,

R, =700hm ; L,=1200mH ; V., =50V ;
F=604x10"N—-m—s/rad ;
J=106x10"*N—-m—s?/rad ;

K =141x%10"2 N —m/A. (24)

The following prescribed output trajectory, consti-
tuted by a picewise linear function, was proposed as
the velocity profile to be followed by the motor’s shaft
angular velocity z

300 rad/sec for t < 0.5s

_J 300-100 (t — 0.5) rad/sec
yr(t) = for 0.5s < t < 155

200 rad/sec for t > 1.5s

(25)
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In order to test the robustness of the proposed discon-
tinuous predictive control scheme, we devised simula-
tion trials on two unmodelled perturbation input cases,
both of them corresponding to the unmatched pertur-
bation type. Thus, the above controller was used in
combination with the following (actual) nonadapted,
perturbed, systems:

. V, K
z; = —-?—:-11+L—:—L—rzgu+t9(t)
Ty = Fz +K:c u
2 = 72t o '
y = (26)
. R V;
r; = —L—:21+—If—z—r‘.’£2u
i‘g = —5—‘-1‘2-}-?1‘1“4-19(0
y = n 27)

where the signal J(t) was set to be a computer gen-
erated, normally distributed, white noise signal. The
simulation results in both cases were highly encourag-
ing and the performance obtained was remarkably ro-
bust. We only show the simulation results correspond-
ing to the performance of the system (26), controlled
by a predictive scheme that includes the dynamic slid-
ing mode regulator (23). :

Figure 1 shows the angularvelocity response of the
system in comparison with the desired trajectory (25)
(shown in dashed lines). In spite of the unmatched
nature of the perturbation signal ¥, the controlled tra-
Jjectory y(t) follows, quite closely, the required angular
velocity profile. Figure 2 depicts the corresponding
armature circuit current z;, while Figure 3 represents
the bang-bang free control input signal u generated
by the dynamical sliding mode predictive controller
scheme. Figure 4) shows the applied perturbation in-
put signal 9 and, finally, Figure 5 depicts the corre-
spoding sliding surface evolution.

4. Conclusions

In this article a model based predictive control
scheme has been proposed which combines the advan-
tages of sliding mode control robustness, and its tradi-
tional high performance features, with the conceptual
simplicity of nonlinear system inversion techniques.
This association of these techniques was proven to be
particularly suitable for conceptually dealing with the
associated output tracking problem present in every
predictive feedback control scheme.

The adopted framework of designing sliding con-
trollers via a GOCF of the nonlinear system model,
which is, fundamentally, an input-output design ap-

proach, results in the possibility of effectively compen-
sating for bounded unmatched uncertainties.

The obtained results may be extended to the case
of decouplable multivariable input-output systems. In
this context research efforts are being directed to re-
late the. approach proposed here with the theory of
differentially flat systems (see the work of Fliess and
his colleages in [26]-[28]). In forthcoming publications
we will show that the combination of sliding mode con-
trol, model based predictive control and differentially
flat systems, results in a most natural, and rather gen-
eral, way to formulate, and design, robust predictive
regulators for controllable nonlinear multivariable sys-
tems.

An illustrative single-input single—output example
was presented in which a dynamical sliding mode con-
trol strategy is devised for robust error stabilization
on non-adapted systems. The results show the insen-
sitivity of the sliding mode controller to rather large
(unmatched) external random perturbation signals.

The results also show that the advantageous com-
bination of sliding modes, and perdictive control, re-
sults in an eflicient feedback corrective scheme which
accomplishes the desired control objectives.
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Figure 1: Angular velocity response of predictive dynam-
ical sliding mode controlled d.c. motor.



