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Abstract

Motivated by an appropriate matched generalized
state-space model, a robust sliding mode control is de-
scribed which uses plant output information in con-
junction with a particular sliding mode observer. The
need for the usual structural matching constraints re-
lating the input and output spaces, is circuravented.
The proposed methodology is illustrated by consider-
ing a tutorial design example.

1. Introduction

Sliding mode observation and control schemes for
both linear and nonlinear systems have caused consid-
erable interest in recent times. Discontinuous nonlin-
ear control and observation schemes, based on sliding
modes, exhibit fundamental robustness and insensitiv-
ity properties of great practical value {11], [1]. A fun-
damental limitation found in the sliding mode control
of linear perturbed systems and in sliding mode feed-
forward regulation of observers for linear perturbed
systems, involves the necessity to satisfy some struc-
tural conditions of the “matching” type. These condi-
tions have been widely recognized [11], [12], [2]. Such
structural constraints on the system and the observer
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have also been linked to strictly positive real conditions
[12], {13]. More recently, a complete Lyapunov stabil-
ity approach for the design of sliding observers, where
the above-mentioned limitations are also apparent, has
been presented [3].

Here a different approach to the problem of output
feedback control for any controllable and observable,
perturbed linear system is taken. For the sake of sim-
plicity, single-input single-output perturbed plants are
considered, but the results can be easily generalized
to multivarable linear systems. As is inherent in any
sliding mode approach, the system must be relative
degree one with respect to the measured output, and
must also be minimum phase with respect to that out-
put. However, this work does not impose any addi-
tional assumptions on the class of systems to which it
may be applied.

Using a Generalized Malched Observer Canonical
Form (GMOCF), similar to those developed in [3}, it
is found that, for the sliding mode state observation
problem in observable systems, the structural condi-
tions of the matching type are largely irrelevant. This
statement is justified by the fact that a perturbation
input “rechannelling” procedure alwaeys allows one to
obtain a matched realization for the given system.
Such rechannelling is never carried out in practice and
its only possible purpose may be to obtain a reasonable
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estimate (bound) of the influence of the perturbation
inputs on the state equations of the proposed canonical
form. It is shown that the chosen matched output re-
construction error feedforward map, which is a design
quantity, uniquely determines the stability features of
the reduced order sliding state estimation error dy-
namics. The state vector of the proposed realization
is, hence, robustly asymptotically estimated, indepen-
dently of whether or not the matching conditions are
satisfied by the original system.

The sliding mode output regulation problem for con-
trollable and observable minimum phase systems, us-
ing a combination of a sliding mode observer and a
sliding mode controller is then addressed. For this,
a suitable modification of the GMOCEF is proposed.
The matched canonical form turns out to be, quite
surprisingly, in traditional Kalman state space repre-
sentation form. The resulting Matched Output Reg-
ulator Canonical Form (MORCF) is constructed in
such a way that it is always matched with respect
to the “rechannelled” perturbation inputs. The out-
put signal of the system, expressed now in canonical
form, is shown to be controlled by a suitable dynam-
ical “precompensator” input, which is physically real-
izable. For the class of systems treated, the combined
state estimation and control problem (i.e. output reg-
ulation problem) is therefore always robustly solvable
by means of a sliding mode scheme, independently of
any matching conditions.

In Section 2, a matched Generalized Observer
Canonical Form, based on the input-output descrip-
tion of the given system, is proposed. In Section
3 a sliding mode control policy is presented for the
matched Generalised Observer Canonical Form. It
is shown that the chosen system realisation permits
matching of the input with the disturbance. It is
demonstrated in Section 4 that an observer which ro-
bustly estimates the required states may also be con-
structed. A robust closed-loop controller/observer pair
is thus defined. A tutorial design example demon-
strates the results of this paper in Section 5. Section
6 contains conclusions and suggestions for further re-
search.

2. A Generalised Canonical Form for Robust
Sliding Mode Control using State
Reconstruction

Consider the following input-output representation
of a linear time-invariant perturbed system

V™ 4 ey 4 kg 4 kiy = Bou
+B1h A+ -+ Bul™
bt 0 (1)

where £ represents the bounded external perturbation
signal and the integer ¢ is assumed to satisfy ¢ < n—1.

The Generalized Matched Observer Canonical Form
(GMOCF) of the above system is given by the follow-
ing generalized state representation model {5]

X1 = ”kIXn+ﬂ0u+ﬂ]ﬁ+'~‘+ﬁmu(m)+A117
X2 = X1 kaxa+ A9
Xn-1 = Xn-2— kn-1Xn+Ana1n (2)
X'n = Xn-1— ann +7
¥y = Xn

where 5 is an “auxiliary” perturbation signal, mod-
elling the influence of the external signal £ on every
equation of the proposed system realization.

The relation existing betwecn the signal 1 and its
generating signal £, is obtained by computing the
input-output description of system (2) in terms of the
perturbation input 7. The input-output description of
the hypothesized model (2) is then compared - with that
obtained for the original system (1). This procedure
results in a 3calar linear, time-invariant, differential
equation for n which accepts as an input the signal £.

The model presented below constitutes a realization
of such an input-output description.

21 = 2z
22 = z3
(3)
Zao1 = Az —Agza— = Ag1Zao1 + €
7 = (Yo—Tm-121)2 + (11 — Tn-1A2)za+ -~

+ (7n—-2 - 7n—1/\n—1)zn—1 +'Yn—1€

where v,y =0 forg<n—1.

Assumption 2.1 Suppose the components of
the auxiliary perturbation distribution channel map
A1, oy An=1, in equation (2), are such that the follow-
ing polynomial in the complex variable s is Hurwitz

pr(s) =s""" 4+ Aas1s" b dos + A (4)

Equivalently, Assumption 2.1 implies that the out-
put of system (3) which generates the auxiliary per-
turbation 7 is a bounded signal for every bounded ex-
ternal perturbation signal £. If, for instance, £ satis-
fies ||| < N. Then, given N, the signal 7 satisfies
|Inll < M for some positive constant M. An easy
to compute, although conservative, estimate for M is
given by M = sup,¢(o,-03/|G(jw)|| N where G(s) is the
Laplace transfer function relating 7 to £ in the complex
frequency domain.

Remark It should be stressed that the purpose
of presenting the state space model for the auxiliary
perturbation signal 7, which accepts as a forcing input
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the signal £, is to show how an estimate, through 7, of
the influence of £ on the proposed state realization (2)
of the original system (1) may be obtained. It should
be noted that in terms of controller implementation,
the model (3) plays no part.

The development of a sliding mode control strategy
for the system realisation (2) will now be explored.

3. A Robust Sliding Mode Control Policy

In order to formulate the closed-loop control proce-
dure, further consideration must be given to the sys-
tem representation (1). Here it is assumed that the
control objective is to force the system output y to
zero in finite time. This objective will be realised by
inducing a sliding mode upon y = 0. The objective
can only be achieved if m = n — 1 with 8,_y # 0;
the system must therefore have relative degree 1. In
addition, the polynomial

4(8) = Ba-1s" 1+ + Bis+ By (5)

must be Hurwitz so that the system is strictly mini-
mum phase. It should be noted that the relative de-
grec 1 and minimum phase assumptions are inherent
in the sliding mode approach and are not particular to
this discussion. Referring to the GMOCF presented
in equation (2) it is necessary to consider the selection
of a control such that the disturbance n acts wholly
within channels which are transparently implicit in
the input. This is necessary to ensure that the per-
formance in the sliding mode will be independent of
the external disturbance. Consider the introduction
of a precompensator

a{s) _ s"PA X 18" TR das+ A
() T Ba-1s™ 4+ Bis+Bo

where A1, ....,An-1 are as defined in (4) and v is the
auxiliary input to the system obtained from the pre-
compensator. The matched realisation for control be-
comes, from (2),

(6)

x1 = —kixa+M@n+v)
x2 = Xx1—kaxa+A(n+v)
Xn-1 = Xn=2—Fkn_iXn+Aoi(n+v)  (7)
Xn = Xnot—knxnt+tn+tv
Yy = Xn

Having obtained an appropriate matched realisa-
tion, it is now necessary to consider appropriate reach-
ability conditions to ensure that the sliding mode,
where y = 0, is both attained and maintained. The
usual expectation of a sliding mode approach is the

ability to specify the dynamic performance during slid-
ing. In other words, the designer specifies a desirable
reduced order dynamics for the system when sliding.
Consider first v defined by

v=-—Wsign y = —~Wsign x, (8

where W > M and M is an upper bound on the mag-
nitude of the perturbation signal 5. It may be shown
that a sliding mode exists in the region

Xn = 0 3 ”Xn—l“ S W-M (9)

This control signal attains a sliding mode using only
output information. However, although y = 0, the sys-
tem dynamics are not prescribed in a desirable man-
ner. In effect, a sliding patch results. Consider now v
defined by

v=-Wsign xn — Xn-1+ knXa (10)

Here a global sliding mode exists on x, = y = 0 for
W > M. Furthermore the ideal sliding dynamics using
this control configuration is determined by the char-
acteristic polynomial p,(s}) = 0 where p.(s) as given
in (4), is by definition Hurwitz. The designer thus has
the ability to specify p,(s) to yield appropriate desir-
able performance. The equivalent feedforward signal,
Veq, is obtained from the invariance conditions [1]

Xn =0 (11)
One obtains from (11) and (7)

Xn =0,

Veg = —Xn-1—1 (12)

This is a virtual feedforward action that is not syn-
thesized in practice, but which helps to establish the
salient features of the average behaviour of the slid-
ing mode regulated system. The resulting dynamics
governing the state evolution on the sliding region are
then ideally described by

X1 = —AiXn-1
X2 = X1~ AzXn-1
(13)
Xn-1 = Xn-2 — /\n—IXn—l
¥y = xn=0

The roots of the Hurwitz characteristic polynomial (4)
are seen to determine the behaviour of the reduced
order system (13), and an asymptotically stable be-
haviour to zero of the state components xi,..., Xn-1
is therefore achievable since the state x, undergoes a
sliding regime on the relevant portion of the “sliding
surface” x, = 0.

'However, the control strategy (10} requires knowl-
edge of the state x,,_; which is unmeasurable. The
possibilities of reconstructing, in a robust manner, an
estimate of this state will now be explored.



4. Robust State Observation

An observer for the system realization (7) is pro-
posed as follows

X1 = —kiXn+h(y—9)+M(v+v)
X2 = ~kakn+ R +he(y—i)+ ha(v+v)
in_l £ —kn—l)A(n + Xn—2 + hn—l(y - 37)
+ An-1(v +v) (14)
Xn = —kaXn+Xno1 +Raly — )+ (v +v)
§ = Xn

Note that we have purposefully chosen exactly the
same output error feedforward distribution map A for
the signal v, as that corresponding to the auxiliary
perturbation input signal n and to the control input
distribution map in (7). As a consequence, the match-
ing conditions are satisfied by the proposed matched
canonical realization (14). The observer has the follow-
ing sliding mode feedforward regulated reconstruction
error dynamics

& = —(kr+hi)ea +M(n-v)
éa = € — (ka4 ha)en + A2(n—v)
bner = €n—2—(kno1+hac1)en
+ Anoi(n—v) (15)
€n = €n-1— (kn +hn)en +(n—2)
€y = €n

where ¢; represents the state estimation error compo-
nents x; — Xi, fori=1,... n.

In order to have a reconstruction error transient re-
sponse associated with a preselected nth order char-
acteristic polynomial, such as

o tags+og (16)

p(s) =s" + ays"”
the gains h; (¢ = 1,...,n) should be appropriately
chosen as hy = a; — k; (i=1,...,n).

The fecdforward output error injection signal v is
chosen to be the discontinuous regulation policy

v = Wsign ¢, = Wsign ¢, (17)

where W is a positive constant. For a sufficiently large
gain W, the proposed choice of the feedforward signal
v results in a sliding regime on a region properly con-
tained in the set expressed by

€ =0, lfn—1[SW~M (18)

The equivalent feedforward signal, v.q, is again ob-
tained from the invariance conditions

e =0,

in=0 (19)
One obtains from (19) and the last of (15)
Veg =N+ €n-1 (20)

The equivalent feedforward signal is, generally speak-
ing, dependent upon the perturbation signal 7.

The resulting dynamics governing the evolution of
the error system on the sliding region are then ideally
described by :

€ = —A€n—
€2 = €1 - A€n-

€ns1 = €noa— Aq_1€ny (21)
&g = € =0

The resulting ideal sliding error dynamics exhibit,
in a natural manner, a feedforward error injection
structure of the “auxiliary output error” signal €,_1,
through the design gains A;, ..., A,-1. As aresult, the
roots of the characteristic polynomial in (4) determin-
ing the behaviour of the homogeneous reduced order
system (21), are completely determined by a suitable
choice of the components of the feedforward vector,
Ay Aot

An asymptotically stable behaviour to zero of the
estimation error components €j,...,€,_1 1s therefore
achievable as the output observation error €, under-
goes a sliding regime on the relevant portion of the
“sliding surface” ¢, = 0. The states of the estimator
(14) are then secn to converge asymptotically towards
the corresponding components of the state vector of
the system realization (7).

The characteristic polynomial (4) of the reduced or-
der observation error dynamics (21) coincides entirely
with that of the transfer function relating the auxiliary
perturbation model signal 7 to the actual perturbation
input £. Hence, appropriate choice of the design pa-
rameters Ay, ..., A\,_; not only guarantees asymptotic
stability of the sliding error dynamics, but also ensures
boundedness of the auxiliary perturbation input signal
7, for any given bounded external perturbation &.

If the state x,_, is not directly available for mea-
surement, the proposed feedback control (10) can be
modified to employ the estimated state obtained from
the sliding observer (14) as

b= kny - Xn-1— Wsigny (22)

where we have used the fact that the output y is clearly
available for measurement. This control policy still re-
sults in a finite time convergence of y to zero as can be
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seen from the closed loop output dynamical equation

¥ = (Xn-1—-Xn-1)+n—Wsigny
= €n-1+n—Wsigny (23)

Since €,_; is decreasing asymptotically to zero, the
output y is seen to go to zero, in finite time, for suffi-
ciently large values of W > M.

The output observation error signal e, , and the out-
put signal y itself, are seen to converge to zero in finite
time. The combined reduced order ideal sliding/ideal
observer dynamics is obtained from the same invari-
ance conditions x, = 0, x, = 0 as before. This results
precisely in the same equivalent control input and the
same equivalent feedforward signals. The resulting re-
duced order ideal sliding/ideal observation error dy-
namics is still given by (13) and (21). The overall
scheme is, thus, asymptotically stable.

5. Design Example

Consider the average Boost converter model derived
by Sira-Ramirez and Lischinsky-Arenas [10]:
2 = —wozz+ pwoza +b (24)
23 = Wwoz) —WiZy — fiwozy

where z;, i = 1,2 denote the corresponding “averaged
components” of the state vector x where z; = I \/Z,
3 = V/C represent the normalized input current and
output voltage variables respectively. The quantity
b = E/VL is the normalised external input voltage.
"The LC (input) circuit natural oscillating frequency
and the RC output circuit time constant are denoted
by wo = 1/VIC and w; = 1/RC respectively. The
variable yu is the control input. The equilibrium points
of the average model (24) are obtained as

bw, b
W)= i
. : (25)
where U denotes a particular constant value for the
duty ratio function. The linearisation of the average
PWM model (24) about the constant operating points
(25) is given by

p=U;Z,(U) = m;%

215 = —(1=U)wozps + T _bUllé
235 = (1—Uwozis —wizas — ﬁﬁm
(26)
with

ps(t) = p(t) = U; zi5(t) = z(t) - Z:(U),i = 1,2. (27)

Taking the averaged normalised input inductor cur-
rent z; as the system output in order to mect the rela-

tive degree 1, minimum phase assumption, the follow-
ing input-output relationship is obtained
215(8)

S+2L4J0
— = w2 (U
us(s) woZa )53+wls+(1~ U)2wy?

(28)

The observer-controller pair (22), (14) is now im-
plemented on the average boost converter model. For
simulation purposes nominal parameter values of R =
30Q, C = 20uF, L = 20mH and E = 15V are as-
sumed. The desirable set point for the average nor-
malized input inductor current is z; = 0.4419 which
corresponds to a constant value U/ = 0.6. In order to
demonstrate the robustness of the approach, the ef-
fects of noise in both the input current and output
voltage dynamics, has been considered. The system
representation thus becomes, from (28),

© —632.46225 + 265.17 15 +
632.46215 — 1666.67225 — 698.7Tus + BE
(29)
Here o and g define the noise distribution channel
which is not necessarily matched. The polynomial (4)

215
226

(]

- which defines the auxiliary perturbation distribution

map is chosen to be
pr(s) = s+ 3000 (30)

The rate of decay of the reconstruction error dynam-
ics, (16), is determined by the roots of the following
characteristic polynomial

p(s) = s® + 85005 -+ 18000000 (31)

Using (30) and (31) an observer (14) for the system
is given by

X1 = 400000%2 + 17600000(y — §)

+3000(v + 9)
X2 = —1666.67%24 %1 + 6833.33(y — §)
+(v+9)
9 = Xa (32)
v o= We,sign(y — §)

The following state-space realisation may be used to
determine the plant input p;

W = —3333.33w + 0.00389 (33)
ps = —333.332+40.00389
8 = —Weonsign y— %1 + 1666.67y

The magnitude of the discontinuous gain elements
Weon and Wop, were chosen to be 120 and 220 respec-
tively. These were tailored to provide the required
speeds of response as well as appropriate disturbance
rejection capabilities. Using a disturbance distribu-

‘tion map defined by a = 0.01 and 8 = —0.02, which is
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clearly unmatched with respect to the input and out-
put distributions of the system realisation (29), and a
high frequency cosine representing the system noise,
the following simulation results were obtained. Fig. 1
shows the convergence of the estimated inductor cur-
rent to the actual inductor current. A sliding mode
is reached whereby z1(t) — Z;(t) = 0. The required
set point is thus attained and maintained despite the
disturbance which is acting upon the system. Fig. 2
shows the control effort, z. The discontinuous nature
of this signal supports the assertion that a sliding mode
has becn attained.

6. Conclusions

In this article it has been shown that, when using
‘a sliding mode approach, structural conditions of the
matching type, are largely irrelevant for robust state
reconstruction and regulation of linear perturbed sys-
tems. In other words, the class of linear systems for
which robust sliding mode output feedback regulation
can be obtained, independently of any matching con-
ditions, comprises the entire class of controllable (sta-
bilizable) and observable (reconstructible) linear sys-
tems which have relative degree one for the measured
output and are minimum phase with respect to this
measured output.

This result, first postulated by Sira-Ramirez and
Spurgeon in [9], is of particular practical interest when
the designer has freedom to propose a convenient state
space representation for a given unmatched system.
This is in total accord with corresponding results re-
garding, respectively, the robustness of the sliding
mode control of perturbed controllable linear systems,
expressed in the Generalized Observability Canonical
Form [6], and the dual result for the sliding mode ob-
servation schemes based on the Generalized Observer
Canonical Form [8].

Sliding mode output regulator theory (i.e. one con-
sidering an observer-controller combination) for linear
systems may also be examined from an algebraic view-
point using Module Theory [4]. The conceptual advan-
tages of using a module theoretic approach to sliding
mode control have also becn recently addressed {7].
The module theoretic approach can also give further
generalizations and insights related to the results pre-
sented.
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