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Abstract
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input current. These models naturally result in generalized, i.e. non-kalmanian, state representations from
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including unmodelled external stochastic perturbation inputs are presented which test the robustness of the
proposed PWM controller performances ’
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1 Introduction

Derived de—to—dc power converters constitute simplified versions of traditional dc power converters,
such as the buck, the boost, and buck-boost converters (see Severns and Bloom [1]). The derived
converters, also known, respectively, as “choppers”, step-up, and step up-down converters are ob-
tained from the traditional converter structures by removing the storing capacitors from the output
circuits (see Rashid [2] for details).

The feedback regulation of dc-to~dc power supplies is accomplished, through either Pulse-width-
modulation (PWM) feedback strategies or by inducing appropriate stabilizing sliding regimes (see
Venkataramanan et al [3], Sira-Ramirez and co-workers [4]-[5]). Typically, control objectives in-
clude input current stabilization, around a given constant value, or time-varying reference input
signal tracking. In this context, infinite frequency average models (see Middlebrook and Cuk [6]) or
equivalent control models are frequently invoked, at the controller design stage, in order to obtain
a smooth feedback specification of the computed duty ratio function (see also [5], Sira-Ramirez (7],
and Sira-Ramirez and coworkers [8]-[10]). The performance features of the actual PWM controlled
circuit responses, with respect to those predicted by the average PWM model, depend on the mag-
nitude of the sampling frequency associated with the pulse width modulator. For low sampling
frequencies, the closed-loop precision deteriorates allowing substantial errors in the stabilization
and tracking tasks.

The use of average models, however, may not be entirely justified for derived dc-to-dc power
supplies. First, the appealing simplicity of the dynamic models does not seem to require further
simplification through a questionable smooth approximation and, secondly, the possibilities for exact
discretization, which is certainly a much more involved process in the traditional version of the
converters, make it reasonable to attempt a direct PWM controller design based on an exact discrete—
time model of the derived converter (see Kassakian et al [11]). The exact discretization circumvents
all problems related to the approximation involved in the finite magnitude of the sampling frequency
used for the pulse width modulator.

It is the purpose of this paper to explore, in detail, the feasibility of PWM stabilizng controller
designs for derived dc—to—dc power converters based on exact discretization of the sampled input
current. Discrete-time regulation policies based on approximate discretization and approximate
linearization were explored by Ehsani et al [12]. The outline of an approximate discretization
approach for the stabilization of more complex dc-to-dc power supplies can also be found in [11].
Related developments, from a viewpoint different to that of feedback control, are found in [2]. Useful
information is also available from the recently published collection of articles edited by Bose [13].

In this article we present the fundamentals of an exact discretization approach for the input
current stabilization in the derived versions of the buck, boost and buck-boost dc-to-dc power
supplies. The linearity in the input, associated with the traditional infinite frequency average models
of the converters, is effectively destroyed by the exact discretization procedure, although the resulting
models still remain linear in the state. For all converters, except the buck—derived converter, the
resulting non-linear discrete-time duty ratio synthesizers (controllers) are of the implicit type, i.e.,
at each sampled instant, the feedback duty ratio function is given by the solution of a transcendental
equation. Similar transcendental equations allow for the off-line computation of the desired steady
state average input current in terms of the steady state sampled input current. Only for the buck-
derived converter it is possible to obtain an explicit expression relating steady-state average input
current values to steady—state sampled input current values.

Section 2 contains an exact discretization approach for PWM feedback regulator designs solving
stabilization problems defined on derived dc—to—dc power supplies of the buck, boost and buck—boost
types. In this section we also present simulations of the proposed control schemes for the various
derived converters. Section 3 is devoted to the conclusions and suggestions for further research in
this area.



2  Regulation of Derived DC-to—DC Power Converters via
an Exact Discretization Scheme

In this section we consider derived dc-to—dc converters and their exact discretization models, nat-
urally associated with PWM feedback regulation strategies. The explicit off-line calculation of the
steady-state value of the input current “ripple” effectively allows for the sampled state feedback
solution of the average input current stabilization problem.

2.1 The buck-derived converter -

Consider the buck-derived converter circuit shown in Figure (see 1) [2]. The switch regulated model
describing the behaviour of the input current, denoted by z, is given by

& = -—Er+ Eu
- L L
y = Rz (2.1)

where y is the output load voltage and the parameters R, L and E stand, respectively, by the load
resistance, the inductance of the input circuit, and the constant input source voltage. The variable
u d?otes the switch position function taking values on the discrete set {0,1}.

regulation strategy, based on a PWM specification of the switch position function, may be,
generally speaking, specified by (see [8]-[10]):

u(t) =

{ 1 for & <t < te+p(te)T (2.2)

0 for tr+pte)T <t < 4T
tk+1=tk+T;’C=0,l,2,...

where p(-) is known as the actual duty ratio function, taking values in the interval [0,1] of the
real line. T is the sampling period and t; is the sampling instant. A typical example of a PWM
commanded switch position function trajectory is depicted in Figure 2.

Since the duty ratio p is specified on-line in a feedback manner, i.e. computed as a function
explicitly depending on the sampled value of the input current z(2x) at each instant ¢, one may
obtain values of y which lie outside the closed interval [0, 1]. We must, therefore, make a distinction
between the computed duly ratio function, denoted by pu.(-) and the actual duty ratio function,
denoted by u(-). The relation between these variables is simply given by:

1 for u, > 1
)= { pelt) for0< peft) < 1 (23)
0 for p.(t) < 0

The actual duty ratio function is thus the forceful limitation of the computed duty ratio function to
the closed interval [0,1].

It is widely known that the PWM controlled trajectory (t) invariably exhibits a natural “chat-
.tering”, or “zig-zag” motion due to the discontinuities associated with the “input” variable u(t).
The following paragraphs compute a discrete time model yielding the value of the sampled state at
each instant ;. The values of the “ripple” are not taken into account by such a model alone but
they can still be computed from additional considerations. i

The buck-derived converter owes its popular name as “chopper” from the fact that the input
current is limited to take values on the interval [0, E/R], as can be easily verified from the circuit
equations. The corresponding (positive) output load voltages delieverd by the converter cannot,
therefore, exceed the value E of the external source voltage.



2.2 An Exact Discretization of the PWM Regulated Buck—derived Con-
verter

The linear nature of the two possible topologies of the converter circuit facilitate the derivation of
an ezact discrete-time model for the evolution of the sampled values of the input current in the
buck—derived converter (2.1), when subject to a switching policy of the form (2.2). Indeed, given
the value of z at time #;, denoted by z(¢;), the value of the input current at the end of the “pulse”,
of width p(2;)T, is obtained after use of the variations of constants formula as

2ty + p(te)T) = e 1P T (1)) + Z_z 1- e"“‘(“‘)T] (2.4)
1

where we have let the parameter 4; denote the quotient R/L and 6, denote E/L.
The sampled value of the input current at the end of the sampling interval is obtained, after
some further computations, as

2ty +T) = e~ Tx(ty) + z—%-m [e"w('kﬂ‘ - 1] (2.5)
X .

If we denote ¥y = e~ 7T and ¥, = 6,/6,, the discrete-time model for the evolution of the input
current, depicted at the sampling instants, is given by the following model

2(tre1) = Wrz(t) + U1 %[99 — 1] (2.6)

where the value of the duty ratio function at time £, p(f;), must now be effectively regarded as the
“control input” variable, to be specified at the begining of each sampling period. The discrete time
model for the sampled input current is, therefore, nonlinear in the new control input, u(t).

The only eigenvalue associated with the linear sampled state dynamics, given by ¥, is evidently
positive and strictly smaller than unity. The steady state value of the sampled input current, denoted
by zZ,, corresponding to constant duty ratio function of value g, is then readily obtained from
(2.6) as ‘

- L£% I
T, = e (7= -1) 2.7)
The supper-index “=” in (2.7) refers to the “lower” portion of the actual zig-zagged trajectory

partially described by (2.6) (see Figure 3). Evidently, a feedback regulation policy which specifies the
duty ratio function p(tx) solely on the basis of the sampled state (i) is, by no means, satisfactory.
The reason for such a statement stems from the fact that the “ripple”, unavoidably associated with
the switch-regulated evolution of z(t;), is not taken into account by the model (2.6) alone. One
must also take into account the values of z(t) at the end of each width-modulated control input
pulse occurring within the sampling period of length T'. In other words, one must take into account
the values of z(t) at the instants t = tx + p(tx)T ; k=0,1,2,... (see Figure 3).

We now relate the values of z at times t;41 + p(tx+1)T and tg + p(tx)T so as to obtain the values
of the “upper” corners of the zig-zagged input current trajectory.

Using the variation of constants formula one obtains,

2(tegr + pltep))T) = WEHDGIH 04 4 pu(1)T) + Ty (1 — THE)) (2.8)

The eigenvalue associated with the above linear state dynamics is clearly given by the product
\Il’ll(t"“)\lli_“(“‘) This quantity is strictly positive and samller than unity for values of u bounded
by the unit interval [0,1). The steady state value of the “upper” corners of the state trajectory,
described by (2.8), corresponding to a constant value g of the duty ratio function, is given by (see
Figure 3),



v,
1-9,

The relation between the steady state values 2, and z, can be obtained from (2.7) and (2.9) as,

(1-W4=) (2.9)

+
Ty =

zg, =zl Wl He (2.10)
Since ¥, is a positive number which is strictly less than 1, one can conclude that z3, < zZ, for
Moo € [0,1].

The steady state “ripple”, denoted by ro,, may then be described as the following difference
- _ ¥
© T 1

(1= ¥4=) (1—\111'““) (2.11)

reo =2t —
We define a steady state average value for the input current trajectory as

1
Zau(00) = 25 + 10 = 5 (25 + 23) (2.12)

Using the expressions (2.7) and (2.9) in (2.12) one obtains

Zan(00) = % (-I-EI'{I,—I) (1-¥=) (1 +\Ir}-“°°) (2.13)

We proceed to express the steady state value of the sampled input current trajectory zZ, in
terms of the average steady state input current z4,(00). This relation allows us to define a suitable
stabilizing feedback duty ratio (control) policy on the basis of the sampled states of the discrete—time
model (2.6). The feedback policy properly takes into account the ripple associated to the controller
trajectory and asymptotically achieves a pre-specified desired steady state value for the average
input current. To achieve this goal one simply eliminates the steady state value of the duty ratio,
lioo from the expressions (2.7) and (2.13). One then obtains,

R [(%(1_%@(00)” ¥, )_ _1_(1_2:c,,,,(oo))2+ v,

(2.14)

‘1’2 1—\1’1 4 ‘1’2 (1—\1’1)2

2.3 A Stabilizing PWM Control Policy for the Buck—derived Converter

The stabilization problem for the buck—derived converter consists in specifying a PWM feedback
regulation policy of the form (2.2) such that the steady state average value of the controlled input
current trajectory z(t) reaches a desired constant value z4,(00) = X.

A stabilizing feedback regulation policy p(#x) can then be explicitly obtained on the basis of the
sampled states of the discrete-time model (2.6) by forcing z(t;) to asymptotically stabilize around
the value z, corresponding to X, which we denote by 22, (X) and rewrite as,

2X ¥ 1 2x\? ¥,
.’L‘;o(X) = -V, [(%(1— *‘E)-i- 1_11,1> - \/;(1 - ‘II_2> + -———-——-——-(1 - \1,1)2 ] (2.15)

We impose on the sampled controlled system the following linear asymptotically stable closed—
loop behaviour

2(tk+1) = @ (2(te) = 25(X)) +25(X) 5 o] < 1 (2.16)



Substituting the right hand side of expression (2.6) on (2.16) and solving for the duty ratio
function p(t;) one obtains the following non-linear computed duty ratio feedback control policy,

(o = W) z(te) + (1 — o) 25 (X)

1
”c(tk):—mlog 1+ ‘1’1‘1’2 k=0,1,2, (217)

The actual duty ratio function pu(t;) may be readily obtained from the expression (2.3). Figure
4 depicts the PWM feedback regulation scheme based on the exact discrete time dynamics model
of the sampled input current.

Expression (2.17) allows for the determination of the region of non-saturation of the actual duty
ratio function. Indeed, the double inequality: 0 < p. < 1, yields the following corresponding region
for the sampled state,

0 < (& = ¥1)z(tk) + (1 = @)aeo(X) < ¥ (1 — ;) (2.18)

2.4 Simulation Results

In order to test the robustness of the previously proposed PWM feedback regulation policy we
carried out simulations on the following noise perturbed model of the buck-derived converter,

S R LONE 210

where v(t) is a (computer generated) stochastic perturbation signal representing an unmodelled
additive noisy voltage source afecting the behaviour of the circuit. The values for the parameters
defining the converter were taken to be

R=28x10"2 Q ; L=10x10"2 mH ; E =126 Volts

The sampling period was chosen to be T = 0.125 ms (1/T = 8 KHz) and the desired steady state
value of the average dynamics was set to be X = 1237 amp. The eigenvalue for the closed loop
linear dynamics, «, was set to be 0.3. The corresponding value of the steady state input current
was found to be z3,(1237) = 1080.7 A. The required steady state average value of the input current
as well as the steady state values £} and z7 are well within the allowable range which guarantees
non-saturation of the actual duty ratio function.

Figure 5 depicts a typical simulated PWM feedback controlled trajectory for the input current
arising from the perturbed model (2.19). This figure also shows the actual duty ratio function
u(t) and the corresponding switch position function u(t). At the end of the figure we show the
perturbation signal v(t). As shown, in spite of the unmodelled perturbation signal the derived
nonlinear discrete-time duty ratio controller performs remarkably well.

2.5 The boost-derived converter .

Consider the boost—derived converter circuit shown in Figure 6 (see [2]). The switch regulated model
describing the behaviour of the input current, denoted by z, is given by

R E
"fl‘(l Co u) + f

y = Rz (2.20)

z

where y is the output load voltage and the parameters R, L and E stand, respectively, by the load
resistance, the inductance of the input circuit, and the constant input source voltage. The variable
u denotes the switch position function taking values on the discrete set {0,1}.



A regulation strategy, based on a PWM specification of the switch position function, may be
specified exactly as in (2.2):

The boost—derived converter is popularly known as the “step—up” converter. This is due to the
fact that the average value of the input current is, theoretically, capable of achieving all values in
the semi-open interval [E/R, 0], as can be verified from the circuit equations. The corresponding
(positive) output voltage delieverd by the converter cannot be lower than the source voltage value
E.

2.6 An Exact Discretization of the PWM Regulated Boost—derived Con-
verter

Given the value of z at time t), denoted by 2(¢x), the value of the input current at the end of the
“pulse”, of width u(t5)T), is obtained after use of the variations of constants formula as

:c(tk + p(t)T) = Bzy(tk)T + z‘(tk) (221)

where we have, again, let the parameter 8, denote the quotient R/L and 6, denote E/L.
The sampled value of the input current at the end of the sampling interval is obtained, after
some further computations, as

ety + T) = e~ T8 [0 4 (t)T + ()] + % 1- em(l—ﬂ<‘~)>] (2.22)
1

If we denote ¥, = e~%7T, ¥y = 05/6; and ¥3 = 6,T, the discrete-time dynamics describing
the evolution of the input current, depicted at the sampling instants ¢, is given by the following
expression

2(ter) = U THVz(ty) + WEHOD) () W5 - W5] + 0, (2.23)

The discrete time model for the sampled input current is, as in the Buck—derived case, nonlinear in
the new control input, p(tx).

Note that the quantity ¥3 = 8,7 represents, for all times ¢z, an upper bound of the input current
ripple z(t;, + p(te)T) — z(tx) = O2(t)T < 6,7

The time—-varying eigenvalue associated with the linear sampled state dynamics, given by
is evidently positive and not greater than unity for all values of y restricted to the unit interval [0, 1].
The steady state value of the sampled input current, denoted by zZ,, corresponding to constant duty
ratio function of value ., is then readily obtained from (2.23) as

‘I,(ll—ﬂ(tk),

L U [ Wy - W) +
- 1— s

(2.24)

We can now relate the values of « at times 541 + p(tx41)T and & + p(tx)7T in order to obtain
the “upper” corners of the zig-zagged input current trajectory.
Using the variation of constants formula one obtains,

2(thrs + ptes)T) = WDty 4 p(t)T) + Usp(ten) + ¥z (1= ¥4  (2.25)

The eigenvalue associated with the above linear state dynamics is clearly given by \11(11“‘ () This
quantity is strictly positive and samller or equal than unity for values of p(t;) bounded by the unit
interval [0,1]. The steady state value of the “upper” portions of the state trajectory, described by
(2.25), corresponding to a constant value pio of the duty ratio function, is given by,

oo W3 + Wy (1 - W{!74))
- 1 gimhe)

+
o)

z (2.26)



Contrary to the Buck—derived case, an expression, independent of p relating ¢t and zg, cannot be
obtained from the expressions (2.25) and (2.26). This fact has a direct influence on the impossibility
to express explicitly the steady-state average value of the input current in terms of the steady state
value of the sampled input current.

It follows from the expressions (2.24), (2.26) and the fact that \11(11"“”) < 1, that 23, < zd for
Heo € [0,1].

The steady state “ripple”, denoted by re,, may be described in a manner similar to (2.11), but
in simpler terms,

Too = 28 — 23 = Vil (2.27)

The steady state average value for the input current trajectory is defined as before
_ 1
Zau(20) = 25 + 5To0 (2.28)
Using the expressions (2.24) and (2.27) in (2.28) one obtains

[Wopes (14 947)) + 282 (1 - wi-)]

2 (1 - \11(11'”“’)) (229

Tay(00) =

It is again impossible to express the steady state value of the sampled trajectory of the input
current, z7,, in terms of the average input current Z4y(00). One must, therefore, proceed to numeri-
cally find the value of po, corresponding to a desired steady—state value of the average input current
X = 4,(00). The required steady state duty ratio function, g, must then be substituted on the
expression for the steady-state sampled input current (2.24). This procedure, which can certainly
be performed off-line, yields the required steady state value of the sampled input current, z3,(X)
to which the corresponding exactly discretized controlled dynamics (2.23) must be driven, by means
of an appropriate prescription of the feedback duty ratio function. The derived controlied policy
forces the average input current to to reach the desired average steady state value.

We show that the required solution, z3,(X), for the steady state sampled input current, in terms
of the steady state average input current, z44(00) = X, always exist for some peo in the interval
[0,1]. Moreover, such a solution is unique. Indeed, manipulatiing expression (2.29) one obtains the
following equivalent expression,

\I,l—llao _ 2X - \Ilalloo - 2‘1’2
1

- 9.
X + Uattoo — 2V (2.30)

We recall that both ¥; and W3 are positive quantities, with ¥; < 1. Consider the left and right
hand sides of (2.30) as functions of . The graph of the function of ps in the left hand side of
(2.30) is seen to continuously increase with non-negative slope while taking values in the interval
[¥1,1) as p varies in the interval [0,1]. The graph of the function of ye in the right hand side of
(2.30), on the other hand, continuously decreases with strictly negative slope, as po varies from
0 to 1, from the value 1 towards the quantity M = (2X — ¥3 — 2W,)/(2X + ¥3 — 2¥3) which is,
certainly, less than unity. The two graphs, therefore, intersect at most once in the interval [0, 1] and
a unique solution exists for peo.

2.7 An Implicit Stabilizing PWM Control Policy for the Boost—derived
Converter
The stabilization problem for the boost—derived converter consists in specifying a PWM feedback

regulation policy of the form (2.2) such that the steady state average value of the controlled input
current z(t) trajectory equals a desired constant value z4y(00) = X.



A stabilizing feedback regulation policy u(tx) can then be (implicitly) obtained from the discrete-
time model (2.23) by forcing z(tx) to asymptotically stabilize around the value z,, corresponding
to X, which we denote by z (X),

One imposes on the controlled system the following linear asymptotically stable closed loop
behaviour

2(tis1) = a (z(tx) — 25, (X)) + 25(X) 5 lof < 1 (2.31)

Substituting the right hand side of expression (2.23) in (2.31) one obtains the following transcen-
dental expression, from which the computed duty ratio feedback control policy can be numerically
obtained at each sampling instant,

g{tosetd) _ a] 2(te) + T4 [ (1) s — W) + Uy — (1 — @) 25, (X) = 0 (2.32)

Rearranging expression (2.32) one obtains the following possible expression for the implicit con-
troller:

- te) — Y2+ (1 - a)zz,(X)

gi-me(w)) _ otk 0 2.33
‘ (1) = Vo + 1ele) s £
The left hand side of the expression varies, as a function of g, from ¥; < 1 to 1, as y. varies from
zero to one. For a given value of z(t;), the right hand side of (2.33) is seen to take values, as a
function of p., on the interval

az(ty) — ¥+ (1 —a)zZ(X) az(ty) — ¥+ (1 —a)z;,(X)
x(tk)—‘lfg ’ l'(tk)— o+ ¥y

(2.34)

It is easy to see that a necessary and sufficient condition for the existence of an intersection point
of the graphs of the two functions, on the interval [0,1], is given by the condition,

az(ty) — ¥+ (1 — a)z3,(X)

<1 2.35
z(ty) — Y2+ ¥ (2.35)
which is equivalent to the following simplified condition,
- LB
2 (X) < z(te) + (2.36)

l-a

Note that in steady state, when z(tx) = z5,(X) the condition (2.36) is trivially satisfied, from
the positivity of ¥3 and the fact that [a| < 1. The implicit controller (2.33) yields then a unique
solution for the duty ratio g, lying in the interval [0,1]. During the transient period, however,
the condition (2.36) simply says that the desired value of the steady state sampled input current,
22 (X), should not exceed the sampled input current, at any time, plus the upper value of all input
current “ripples” ( given by ¥3 = 6>T"), multiplied by a factor of 1/(1 — ). As it can be seen this
is not a very stringent condition, specially if o is chosen to be positive and not close to zero. Note,
furthermore, that in the absence of condition (2.36), the implicit controller (2.33) always yields a
unique solution for u.(tx) but one which is not, necessarily, constrained to the meaningful interval
[0,1].

The actual duty ratio function u(¢;) may be readily obtained from the computed duty ratio
function by use of the expression (2.3). Figure 7 depicts the PWM feedback regulation scheme for
the boost—derived converter based on the exact discrete time dynamics model of the sampled input
current and the implicit duty ratio synthesizer.



2.8 Simulation Results

In order to test the robustness of the previously derived PWM feedback regulation policy, based on
exact discretization, we used the following noise perturbed model of the boost—derived converter,

= —%(1 . (E—"'L—"(—tl> (2.37)

where v(t) represented an unmodelled computer generated stochastic perturbation signal represent-
ing a noisy voltage source afecting the behaviour of the circuit. The values for the parameters
defining the converter were taken to be the same as in the buck—derived case,

R=28x10"2 Q ; L=10x10"2 mH ; E =126 Volts

The sampling period was chosen to be 7' = 0.125 ms (1/T = 8 KHz) and the desired steady state
value of the average dynamics was set to be X = 6000 A. The eigenvalue for the closed loop linear
dynamics, o, was set to be 0.3. The corresponding value of the steady state input current was found
to be 2 (6000) = 5804 A. The required steady state average value of the input current as well as the
steady state values z¥, and z7, are well within the allowable range which guarantees non-saturation
of the actual duty ratio function.

Figure 8 depicts a typical simulated PWM feedback controlled trajectory for the input current
arising from the perturbed model (2.37). This figure also shows the actual duty ratio function
p(t) and the corresponding switch position function u(t). At the end of the figure we show the
perturbation signal v(t). As shown, in spite of the unmodelled perturbation signal the derived
nonlinear discrete-time duty ratio controller performs remarkably well.

2.9 The Buck—Boost—derived Converter

Consider the buck-boost—derived converter circuit shown in Figure 9 (see [2]). In the next paragraphs
we summarize all of the relevant equations leading to the non-linear stabilizing PWM controller
design for the buck-boost derived converter. The feedback loop synthesizing the required duty ratio
function is based on a desired steady state average input current of value X.

The buck-boost—derived switch regulated model

. R E
z —Z(l —u)z — T
= 6;(1 —u)z —fu (2.38)

PWM feedback regulation strategy for the switch position

0 for tk-l-/j(tk)T <t < te+ T
ter1=te+T; £=0,1,2,...

u(t) = { 1 for tp <t < tp+pe)T (2.39)

The buck-boost—derived converter is popularly known as the “step-up—down” converter. This
is due to the fact that the average value of the input current is, theoretically, capable of achieving
all values between 0 and oo.

An exact discretization of the PWM regulated buck—boost-derived dynamics

.'L'(tk + [L(tk)T) = —02/.4(tk)T + .’L‘(tk) ' (2.40)
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oty +T) = e NTU=sD) [0,u(te)T + z(t)]
= WD g,y — WD g (1) (2.41)
Steady—state value of the sampled input current

R e

Ty = L gl (2.42)

Discrete—time dynamics of the “upper corners” of the PWM regulated input current
trajectory
2(ters + pltean)T) = U5 4OVt 4+ p(t)T) — Wop(tesn) (2.43)
Steady state value of the “intersampling” peaks of the input current

+ _ Hoo V3
X = —:Tp-gm (244)

Steady state “ripple”
To =2 —25 = —Wape (2.45)

Steady state average value of the input current trajectory

(1-Hoo)
Zau(00) = 25 + 57 = = -[%:Z (_1 ;1:1‘-1“&)) ) (2.46)

Note that 2X,, < —=U3p00.

Existence of steady state duty ratio function for desired value of steady state average
input current

- 2X4v(00) + ¥3pe0
QXM,(OO) ol Y

A solution for py always exists in [0, 1] from the fact that X4, (00) < 0 and ¥3 > 0. Indeed, on the
interval [0, 1], the left hand side varies from ¥; < 1 to 1 while the right hand side varies from 1 to
(2X 4y (00) + ¥3)/(2X 4y (00) — ¥3), which is less than 1, and may even be negative, by virtue of the
fact that |2X g, (00) — ¥3| > |2X,,(00) + ¥3).

g1k (2.47)

Desired linear asymptotically stable closed loop dynamics
slterr) = a (o(te) — 25(X)) + 25(X) ; lal < 1 (2.48)
Implicit nonlinear feedback duty ratio synthesizer

(1-pe(tn)) _ 0x(te) + (1 — ) 25, (X)
% - Ik(tk) = Wapc(t) (249)

11



Given z(tj) a solution exists for p.(tx), in the interval IO, 1] if and only if the following condition
holds,

22 (X) < z(ts) - I‘If’a (2.50)

which has a similar interpretation to that of condition (2.36).

2.10 Simulation Results

The following noise-perturbed model of the buck-boost-derived converter was used in computer
simulations for the proposed implicit feedback duty ratio synthesizer,

&= -%(1 —u)z— <E—+L”—(t)) u (2.51)

The values for the parameters defining the converter, the sampling period and the eigenvalue
for the desired linear closed loop dynamics were taken to be the same as in the previous case. The
deisred steady state value for the average input current was set to be —1500 A.

The corresponding value of the steady state input current was found to be 22, (—1500) = —1304
A.

Figure 10 depicts a typical simulated PWM feedback controlled trajectory for the input current
arising from the perturbed model (2.51). The actual duty ratio function u(t) and the corresponding
switch position function u(¢), along with the perturbation signal v(t), are also shown in this figure.

3 Conclusions

In this article an exact discretization scheme has been proposed for the regulation of perfectly known
derived dc—to—dc power supplies of the buck, boost and buck-boost types. The complexities arising
in the stabilization problem associated with such devices are related, fundamentally, to the highly
nonlinear form of the derived duty ratio compensators. For the boost and the buck-boost converters,
such controllers cannot be found explicitly. a transcendental equation must be solved on-line at each
sampling instant on the basis of the current (sampled) state of the converter circuit.

Some of the difficulties encountered in the simple one—dimensional cases here treated become
more striking when dealing with the traditional two dimensional converters, including output low
pass filters based on RC arrangements. In this case, the symbolic manipulation task associated
with the solution of the regulation problem becomes particularly intricate, even with the help of
very efficient computer packages such as Maple, or Mathematica.

As a topic for further research, the case of derived converters with uncertain parameters is of
particular practical interest and one for which efficient nonlinear discrete-time adaptive control
techniques must be developed.
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Figure 8: Simulation Results of PWM Regulation of Perturbed Boost—derived Converter
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Figure 9: The Buck-Boost—derived Converter

19



