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Abstract

The output tracking problem of a class of observable
minimum-phase uncertain nonlinear systems is
considered, and a solution based on a suitable
combination of input-output linearization and the
adaptive backstepping control design procedure
is proposed. Dynamical adaptive controllers
arise from dynamical input-output linearization,
by using a general non-overparameterized
adaptive backstepping algorithm without explicit
transformation of the controlled system into
parametric-pure or parametric-strict feedback forms.
The validity of the proposed approach is tested
through digital computer simulations.

1 Introduction

Output tracking and regulation problems of linear
and nonlinear systems under parametric uncertainty
conditions have been extensively studied in recent
years. The outstanding backstepping approach de-
veloped in [1] provides an efficient control design pro-
cedure for both regulation and tracking problems of
uncertain systems. This approach is based upon a
systematic procedure for the design of feedback con-
trol strategies suitable for a large class of feedback lin-
earizable nonlinear systems exhibiting constant, but
unknown, parameter values, and guarantees global
regulation and tracking for the class of nonlinear sys-
tems transformable into the parametric-strict feed-
back form.

Recently, a recursive procedure has been reported
by Sira-Ramirez et al ([2]), which implements the fun-
damental ideas related to the adaptive backstepping
algorithm, developed by Krstié ef al ([3]), in combin-
ation with dynamical input-output linearization (see
Fliess [4]). This scheme has been also used from a
Sliding Mode Control perspective (see [5]) to design
dynamical sliding mode output tracking controllers
for uncertain nonlinear plants. Here we develop a
general algorithm to design output tracking control of
a class of observable minimum-phase uncertain non-
linear systems via a non-overparameterized feedback
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control strategy, which is based upon a combination
of the adaptive backstepping algorithm and dynam-
ical input-output linearization. The results presen-
ted are locally valid and their main advantage is as-
sociated with their applicability to uncertain non-
linear systems without explicit transformation into
parametric-pure or parametric-strict feedback forms,
while inputs are allowed to appear at intermediate
steps of the procedure and control input derivatives
are invariably present at the final step of the proposed
algorithm.

In Section 2 the algorithm yielding dynamical ad-
aptive output tracking controllers is presented. An
application example and digital computer simulations
are carried out in Section 3. Section 4 contains the
conclusions and suggestions for further work in this
area.

2 Dynamical input-output lin-
earization via adaptive back-
stepping control

In this section we describe a systematic algorithm
for dynamical adaptive output tracking controllers
from a backstepping perspective. The steps leading
to the adaptive controller differ from the traditional
considerations, associated with the parametric-pure
and parametric-strict feedback forms, since
transformations into these canonical forms are not
required and, moreover, the control input and
their derivatives may appear at intermediate steps
of the recursive design procedure. The adopted
computational procedure becomes equivalent to
the traditional adaptive backstepping algorithm
([3]) when the output corresponds to a “linearizing
function” of the system. This approach is suitable for
a large class of observable minimum-phase nonlinear
systems, dynamically input-output linearizable and
with constant but unknown parameters. This class
of systems can be represented through the following
dynamical system

fo(@) + 0T x(2) + (g0(2) + 6T p(2))u (1)
h(z)



where ¢ € R" is the state, u € R the control input,
y € R the output and 6 € RP an unknown parameter
vector. We assume that fy, go, A and the components
of ¥ and ¢ are smooth vector fields on R”, p is the
relative degree of (1) with respect to u, the relative
degree with respect to 8 is 1, and the whole state is
available for feedback.

The control objective is to drive the system output
y(t) to track asymptotically a desired reference signal
y-(t). We also assume that y,(t) and its derivatives
up to order n are bounded and sufficiently smooth
functions of ¢.

Step 1. Define the output variable error as

7z =y -y (t) = h(z) - % (t) (2)

and according to the system model equations (1), the
time derivative of the output error z; is given by

EY)(z,8) = 4. (2)
%’ [fo+ 677+ (g0 +670)u] =3 (t) (3)

%

i

If the relative degree p with respect to u is greater
than one,

@

is satisfied. By adding to and subtracting from the
actual value of the parameters § their estimated val-
ues 8, the expression (3) can be rewritten as

22 ((9o(=) + " p(a))w) = 0

2= b0, - i)+ 0 - ()
with
@) = 2 () +796) 6
w = ) ™
Let us consider the quadratic Lyapunov function
Vi = ;2+ =(6 - 6)TT-1(6 - 6) (8)

where I' = I'7 > 0 is a matrix of adaptation gains.
The time derivative of V] is

Vi=n (h0(,6) - g,(t))+(e—é)Tr-1(—é+rz1w,)
9

We can achieve V; = —c122, with ¢; a positive scalar
design constant, by choosing the tuning function

é’—' = Pz1w1 (10)
if the expression

AD(z,0) - 9. (t) = —e121 (11)
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is satisfied. The expression (11) represents a desired
algebraic relation by which an effective stabilization
of the output error would be possible in combination
with the estimation update law (10). However, since
(11) is not valid from the outset, we take its difference

23 = h(2,0) — g (t) + e121 (12)

as our second error variable, obtaining the closed-loop
form for 2; as

Hn=—an+zn+0@- é)T‘Ul (13)
and Vl yields
Vi= —clzf + 21224 (6~ é)TI‘--l("é +n) (14)

By proceeding this way successively, we obtain the
following j-th generic step, which characterizes the
first steps previous to the explicit appearance of the
control input in the transformed dynamical system.
Stepj (2<j<p-1)

5 = h9(e,0,0) 400 + 2571 gy 4. 479)
L ,+aa5t Ly (6-6)Tw;
dhU-1) Ooj_y ;
_ =29} FF S 15
+( -l [ D
with
o jG-1) j-1)
B0, 8,0y = PO gy g imyy 4+ B0
oz
ShG-1)
- (16)
3il(j_l) 601,-_.1
wj = (T+ 9z ¥(=) (17

and 7; is the corresponding tuning function defined
at this step. By augmenting the Lyapunov function
of the form

V=V + %,?_2; + (e 6)T1r-1(6 - 0)
(18)

——”"’r‘) (6-1)

the time derivative of V; satisfies

fy‘j 2, ORU-D N
£= ¥ 25 7
‘ T\ oé

i=1

j-1 = -1 .
Bh(' 1) T 4
( E 2 A E ¥ 41 6é l) (0—1']'_1)

=2 =3

a

+(0— o)Tr-l(—é + 721+ Tzjw;)

+z [z, 1+ (2, 6,t) ~ 4 (1) + = 30:, :

60']'_1 .

6(!_7 1
— Tt
il

+

Doz, +0T7)] (19)



We can eliminate (§ — §) from V; by choosing the
tuning function

é:Tj =Tj_1+Fijj (20)

and noting that

é"’Tj_l :é——fj+‘rj—rj_1=é—rj+l‘zjwj (21)
Wwe rewrite V, as
. i-! i
Vi==Y az+(0-8)TT (-6 +1)
i=1

i oaiG i
Bh("l) fai—y -
+ i L ) (-
(Z:z 36 +.E’ a5 )¢
j-1 -1
ah(- 1) Bei-y
< 5 x Tw;
+h(’)(z 8,1) - y(’)(t)+ ’ —= (fo+6T)
] dorj_
+ =+ 1+z,-_1] (22)

We can achieve V; = — Y7_, ¢;2?, with the ¢;’s being
positive scalar design constants, lf

' 8h(-D 2 B0y,

i 8 = Tw;
(Zz +5 ; N
+B0(2,0,0) ~y(0) + 21 gy 4 07)

Oaj - Oa;
+ a’él 7+ a’ 1+z,-_1=-c,-z,~ (23)

is satisfied. Again, since (23) is not valid from the
outset, we take its difference as our (j + 1)-th error
variable

zip1 = KONz, 8,8) — 4 (8) + a;(2,6,t)  (24)
with
i-1 P(i- i-1
ah(' 1) aa;_l
aj =21+ i——— + i—— | Tw;
= (;z 3 ;az a )
4 dain iT Octj-1
+ 2 fole) + (@) + Sty
6&'-1
+ <’th + ¢z (25)
obtaining the closed-loop form for z; as
B = ~zj_1 = 6575 + zj1 + (0 — )T w;
j-1 o 1y -1
- (E Oh Zz,aa' 1) Tw;
i=2

3&_7‘_1
o9

Qhli-1) 2
+(—6é—+ )(e—rn (26)

1581

and V; yields
j .
Vi==Y arf + 2z + (0~ 0)TT7 (=0 + 75)

(Z % Z % 6Cg 1) (6- 73) (27)
=3

We now summarize the steps containing the control
input and its derivatives in the following generic step.
Stepk(p<k<n-1)

2y = il(k)(a:,é,u, o
OJap_y | Oog_y

ot t e
akl

+ — 4 [fo+8Tv+ (90 + 9T§0)u]

3011:1
+Ea (- l)

h(t 1)

+9),1) — (1)

+

u® 4 (6 - 6)Twy

5h(k—l) 30{1:-1 -
— + S g - 28
+< 28 s )¢-m @
with
. N ShG-1)
A%)z, 8, u, ulk=P) 1) =
(z,0,u t)= 5 ™
ah(k 1)
+ [fo + 077+ (g0 + 0T 0)u]

Bh(" D @) 6h( -1
Z fut-n " at

("-1)
wk:(ah . +6ak 1

(29)

£ oz ) (v + ou) (30)

and 73 is a tuning function. By augmenting the Lya-
punov function of the form

Z 24z (a 6)Tr-1(6 - 6)
= (31)

1
Vi = Vi1 + 5

the time derivative of V; satisfies

. Sh(k-1) a
Vk=zk( P ke 1)(9—17:)

-1

E iz}

i=1

k-1 £ (s k-1
> B8Rt > daio1\
f 7 + fi 7S 0 — TR
¥ (i:zz o0 izaz a9 ( * l)

+(8 = 6)T0 (8 + 71 + Tzpwy)
+ 2 [zk._l + ii(k)(:c 6, u, u(""’),t) -

Z 50!1: 1,0 601:-1
BuG-D" ot
aak 1

+ =2 fo + 0Ty + (g0 + 67 go)u]] (32)7

k)

0‘):1




We can eliminate (§ — §) from V; by choosing the
tuning function

b= Tk = Te—1 + Tzrwy (33)

and noting that
9 Th—t = 9 Te+Th—They = 9 T + Tzrwe (34)

we rewrite Vk as
k-1 . .
- Z c,-z,-2 +(6— G)Tl"l(—9 + 1)

=1
k i E
(Zz.ah( 1) E"aa' 1> G- )

Vi =

k-1 k-1
h('_l) Ba._l)
EA ~ § Twe
o | (G e
+hE (2,6, u,. .., u*=P) 1) — 4B (1)
6
k 1[fo+0T7+(yo+0T Yu]
36!), 1 5&), 1 i)
. 'E+Zau("1)
3
+ a(:; Ltz 1] (35)

We can achieve Vl, = - E‘. ciz2, with the ¢;’s being
positive scalar design constants 1f the expression

Ri-1) kol
Zk-1+ <Zz|6 Py

ZZ 6(!,

+ Atk )(z,ﬁ,u,. ulk=#) 1) — y(")(t) + Bouk— el it VY
7/
+ S fo + 67y + (0 + 0T )]
(i 0 6a -
+ Z 7u (f 11) akt = —Ckzp (36)

is sa.tlsﬁed. However, since (36) is not valid from the
outset, we take its difference as our (k + 1)-th error
variable

Zk41 = fl(")(z,é,u, . .,u("'”),t) - yg‘)(t)

+ak(z,é,u,...,u(""’),t) 37)
with
k"‘l (t—l) k-1 i
Qp = Lz, h Zz;aa'.-l ka
i=2 =3 69
Oak-1 (i

+ 2z ‘+Ea iy u®
3&,, 1 AT AT

+ [fo+ 6"y + (g0 + 67 p)u]
60:1,_1 Oag_y

+77’k+ 3t + cr 2 (38)
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obtaining the closed-loop form for z; as

Zr = —2zk_1 ~ ez + zkg1 + (0 — 6)Tuy

k-1 k-1
6'1(' 1) - 3a.~_1
i i——— | I
- (525 ; )
Bh(" 1 6ak 1
+ - 39
( % Tk) (39)
and Vk yields
=Yzt + mzmp
i=1
E k
Y 3h(' l) 8(1.'_1 P
2 3 i - -

+ (e = 9)Tr-1(—a + r,,)

Step n. At this final step we select our actual up-

date law 6 = 7, and the dynamical output tracking
controller. This step is carried out in a similar man-
ner to obtain, from the tuning function, the following
update law for the unknown parameters

é: Tpn = Tp-1 4+ Fzpw, = I‘Eziwi (41)

From the desired algebraic relation for the error vari-
able 2, we obtain the following expression character-
izing the output tracking controller
n-1
) ) Tw,

= Oa;

Zn-1 -+ ( ‘Z. Z 2 =
== 0

+ bz, 6,u,... u(" P t) — yim(t)

+ 20 L 6T (g0 + BTl +

+Z

The control function u can be obtained implicitly, as
the solution of the nonlinear time-varying differential
equation defined by (42). This expression, together
with the update law (41), allows us to achieve our

goal
n
- Z izt <0

i=1

h(t 1)

dan_q

Ba_ fay,
n (,) "Aln
T

Suls~ l)

(42)

= —CnZp

(43)

The convergence of the output to the desired traject-
ory y,(t) can be proved by using the LaSalle invari-
ance theorem (see [3]).



3 An application example

Consider the following nonlinear dynamical model of
a field controlled DC-motor

R K

; = LA

ry = I, z La:ltz’ll+ I.

T, = —7:62 + 7—1‘1’!1 (44)
y = 22

where z, represents the armature circuit current and
2 is the angular velocity of the rotating axis. V; is a
fixed voltage applied to the armature circuit and u is
the field winding input voltage, acting as the control
input. The constants R,, Ls, and K represent the
resistance, the inductance in the armature circuit and
the constant torque, respectively. The parameters J
and B are the moment of inertia and the associated
viscous damping coefficient of the load. We assume
that all parameters are unknown and rewrite (44) as

i‘l = —01$1 cs 021}2’(1 + 03
1.32 = -—94.’22 + 053111 (45)
y = 22

with

Rq K Va B K
0= 0=—;803==;043==; 6= —
1 La»z La’s La)4 Jv05 7
(46)

We assume that y.(t) is a known, desired, bounded
reference trajectory for the angular velocity z, taken
to be the output function. By following the algorithm
described in the previous section, we design an adapt-
ive controller to track the desired trajectory. Note
that the relative degree p is one and therefore the
time derivative of the control input will appear at
the second step of the design algorithm.

Step 1. By defining the output variable error
z1 = 22 - yr(t), the time derivative of z; is given by
#1=0Tw 4 (0 - 8)Twr — 9 () (47
with
0
0
w1 = 0
~z,
u
Consider now the Lyapunov function
V= %zf + %(9 _GTr6—6)  (48)

Its time derivative is given by

Vi =2 [0Ter ~ 5o (8)] + (0~ 7T (=0 + Tz1e)
(49)

1583

We can achieve V1 = —clzf with the tuning function
b= =Tnw (50)

if the expression
6Tw) — 9 (1) = —e121 (51)

is satisfied. However, since (51) is not valid, we define
our second error variable as

z9=0Tw1 =9 () + 121 (52)
obtaining the following closed-loop form for 2,
n=—an+z+0- é)Twl (53)
and
Vi=—c1zi+ 2120+ (0 - é)TF"’(—é +7) (54)

Step 2. At this step we design the output track-
ing controller and the updating law for the unknown
parameters. The time derivative of the second error
variable is

T T A . .
29=0"wy + 0 w1+0531il—.'/r(t)"clyr(t)
+ (6 —-6)Tw, (55)

with . v
—0511’”
—é522u2
ésu
» —(Cl - é4)32
(c1 — B)z1u

Wy =

By augmenting the Lyapunov function as

1
Va=Vi + Ez% (56)

we obtain the following time derivative of V3

V2 = —clzf + (0 - é)TF-l(—é +n+ FZzuz)
N 2T N

+ 2, [11 +0Twr 40 wy + 85210

~ e (t) ~ can (t)] (57)

We now can eliminate (§ —4) from V; with the update
law

é =T =" + FZzwz = F(lel + Zzwz) (58)
and, finally, we achieve
V=Vi=—ci2? =322 <0 (59)



with the control implicitly defined by the following
nonlinear time-dependent diferential equation

1
észl

i = — -5 =80 Fen 45 () +erie () =272
(60)
Simulations of a tracking task were performed for
a DC-motor with the following parameter values
R,=7TQ ;
K =1.41x10? N-m/A

B = 6.04 x 10~¢ N-m-s/rad

J = 1.06 x 10~% N-m-s®/rad
A desired output reference trajectory y,(t) was con-
sidered to allow a smooth transition of the angular

velocity z; between two operating equilibrium points
X3, X5

Ly=120mH ; V,o=5V

(t) _ Xs 0<t<ty
Wi =1 X3+ (X2~ X3)exp(—kt?) t>1
(61)

Figures 1 and 2 show the time response achieved.

4 Conclusions

The output tracking problem of a class of observ-
able minimum-phase uncertain nonlinear systems has
been solved via adaptive input-output linearization in
combination with the backstepping algorithm. The
proposed approach achieves the design of dynamical
adaptive output tracking controllers and can be ap-
plied to a large class of nonlinear systems, including
those that are not transformable into the parametric-
pure and parametric-strict feedback forms, typically
considered in the applications of the backstepping
procedure. As an application example, the controlled
smooth transition of the angular velocity of a nonlin-
ear DC-motor was presented. As a topic for further
research, the use of state observers to estimate un-
measured state variables should be studied.
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Figure 1: Angular velocity response for controlled
tracking task, armature circuit current, control input
voltage and parameter estimate of 6.
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