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Abstract

A passivity based sliding mode controller-observer de-
sign scheme is proposed which achieves the output
fecdback stabilization of a realistic model of a switch-
mode DC-to-DC Power Converter of the “Boost”
type. Suitable “damping injections” and “energy
shappings” can be independently accomplished, via
discontinuous feedback and discontinuous feedfor-
ward output injections, for both the regulated plant
and the sliding mode observer error dynamics, respec-
tively.

Keywords : DC-to-DC Power Converters, Sliding
Modes, Passivity Based Output Feedback Regulation.

1 Introduction

In this article an output feedback controller is pro-
posed for the stabilization of a switch regulated DC-
to-DC power converter of the “boost” type. The de-
sign entitles a suitable modification of the dissipation
energy properties of the desired closed-loop stabiliza-
tion error dynamics and of the state reconstruction
error dynamics. This is achieved through dynami-
cal discontinuous feedback and discontinuous feedfor-
ward output injections, respectively. We first obtain,
under the assumption of full state availability, a dy-
namical passivity-based sliding mode feedback con-
troller. An alternative observer-based output feed-
back scheme is next proposed using a sliding mode
observer whose design is also based on passivity con-
siderations. In the controller and observer designs the
workless forces, inherent in the open loop dynamics
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of the system and of the observer, are never cancelled
through feedback nor through the feedforward output
injections. In this manner, the controller-observer
structure is considerably simplified with respect to
other schemes based on exact linearization.

Sliding mode control of dc-to-dc power convert-
ers was first treated by Venkataramanan et al [1]
from an approximate linearization viewpoint. The
topic was later treated by Sira-Ramirez [2], from a
nonlinear differential geometric viewpoint. Connec-
tions of sliding mode controllers for dc-to-dc power
converters with singular perturbation techniques, in-
volving the natural time scale separation properties
of the average models of the power converters, was
treated by Sira-Ramirez and Ilic-Spong in [3]. An
exact linearization approach for sliding mode con-
trolled dc-to-dc power converters was also proposed
by Sira-Ramirez and Ilic-Spong in [4]. More recently,
sliding mode control of dc—to-dc power converters
has been approached from an Extended Lineariza-
tion viewpoint in the work of Sira-Ramirez and Rios—
Bolivar [5]. Passivity based controllers for Pulse-
Width-Modulation controlled models of ideal de-to-
dc power converters are also proposed in Sira-Ramirez

and Ortega [7].

Section 2 of this article presents a passivity-based
sliding mode controller for a realistic model of a
“boost” converter. The sliding mode controller,
which turns out to be dynamical in nature, is de-
rived under the assumption of full state availability
for feedback. Section 3 is devoted to derive a sliding
mode observer by means of passivity considerations.
The feedforward injection terms act as limited control
variables which enhance dissipativeness of the estima-
tion error energy. The overall asymptotic stability of
the closed loop controller is presented in Section 4.
The last section is devoted to some conclusions and
suggestions for further work.



2 A Passivity-Based Sliding
Mode Controller

Consider the following realistic model of the “boost”
converter circuit proposed in the work of Czarkowski
and Kazimierczuk, {8], shown in Figure 1
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where L and C and R are, respectively, the input
inductance, the output capacitance and the load re-
sistance of the converter circuit. The variables z;
and z, represent, the inductor current and the ca-
pacitor voltage, respectively. E is the voltage of
the external source and u is an ideal switck posi-
tion function taking values on the discrete set {0,1}.
The control dependent resistance r(u) is given by
r(u) =rp+urps+(1—-u)Rp(1 - u)rcl|R, where the
symbol rc||R stands for the resistance of the parallel
connection of rc and R. The resistances rp and r¢
represent parasitic resistances associated with the in-
put inductor and the output capacitor, while rps and
RFp are “ON” resistances associated with the tran-
sistor and diode constituting the switching arrange-
ment. The voltage source Vg represents a parasitic
voltage appearing across the diode during the con-
duction stages. In order to avoid non-minimum phase
problems, the output of the converter will be taken
to be the input inductor current z;. However, for the
time being we assume that the entire state vector is
available for measurement (see [7})

For ease of reference we rewrite equation (2.1) in
matrix form as

Dpz + (1 - u)Jpz + Rp(u)z = Ep(u) (2.2)
where
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The total stored energy of the system is given by
H= %:Tvgz = %(sz + Czd) (2.9)

The time derivative of the energy function H along
the controlled trajectories of (2.1) result in
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- nE-(—w) - |
~r(u)el
S .‘L‘lE

and upon integration of the previous expression on an
arbitrary time interval [0,¢], the system is seen to be
passive from the input source E to the output z, (see
Ortega et al [9]). Note that the “forces” represented
by (1 — u)Jpz are indeed workless due to the skew—
symmetry of Jp

Let z4(t) denote a desired trajectory for the state
variables of the “boost” converter (2.1). Denoting
by Z(t) the error vector trajectory z(t) — z4(t), one
obtains from (2.2) the following expression

Dpz + (1 — w) Tk + Rpi = ¥(u) (2.6)
where

P(u) = Ep(u) — (Dpza + (1 ~ u)Tpza + RBz4)
(2.7)
A desired damping can be achieved for the error sys-
tem through the injection, to the dynamics (2.6), of
a suitable term of the form
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Let the desired damping term be specified then by
the Rps% = (Rp + R18)%. One finds immediately
that

Dpi +(1-u)Jpi + Rpa = ¥(u) (2.9)
with

Y(v) = Ep(u) (2.10)
—[PBz4+ (1 — u)TBzd + Rpza — R1Bi)

If Y(u) were identically zero, the resulting error dy-
namics, or the desired error dynamics

Dpi + (1 u)Jpé + Rpat = 0 (2.11)

would be asymptotically stable to zero. Indeed, the
error system (2.11) has an associated total stored en-
ergy, given by: Hy(t) = 3#TDpz. The time deriva-
tive, along the trajectories of (2.11), satisfies, for some
constant and positive scalar a, the following property,

Hi(t) = ~2TRpa(u)z < ~aflZ|)? (2.12)

The condition ¥(u) = 0 can be explicitly expressed
as
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Let 14 = I, be the desired constant steady state
value of the input inductor current. It is easy to see
that, under this circumstance, the first expression in
(2.13) is somewhat contradictory. Indeed, note that



u is a variable that takes values in the discrete set
{0,1} while the functions z; and z4 are at least con-
tinuous functions of time. In other words, the above
pair of equations can only be exactly satisfied as long
as u itself is a continuous function, which is a contra-
diction unless u is constant. However regarding u as
a constant destroys all possibilities of feedback regula-
tion. Hence, the expressions (2.13) must be regarded
as holding valid in an equivalent control sense, i.e.,
in an average sense (see Utkin [10]). We therefore
denote u as an equivalent control u., and z24 as z34.

From the first expression in (2.13) one then obtains
the value of the virtual controlinput, u.4, that renders
the first component of 1 identically zero in an average
sense.

Uy = "(b’(lz; ‘3“) (2.14)
with
a(zy,229) = Ri(zi— L)+ E-Vp
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A well known necessary and sufficient condition for
the existance of a sliding regime is constituted by the
following condition, which was rigorously obtained in
(2,

a(z1, 224)
b(Z2d)
The above conditions.actually delimits a time-varying
region in the space of the variable zo4 where such a

sliding regime exists.

The second expression in (2.13), can also be re-
garded as being valid in an average sense, when
evaluated for the obtained equivalent control input
% = uq. The resulting differential equation actually
constitutes an ideal sliding dynamics. Such dynamics
is consistent with both the desire of having z,4 = I3
and also with the fact that the relation ¢ = 0 holds
valid in an average sense.

0 < tey = <1 (2.16)
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In fact, the expression (2.17) qualifies as a dynam-
ically generated duty ratio function corresponding to
the “infinite switching frequency” pulse width mod-
ulation feedback strategy, which is equivalent to the
proposed ideal sliding mode behaviour ( see [2) for
details).

From the previous developments, it is clear, at least
in an average or ideal slidng mode sense, that the
“controller” state variable z,4 satisfies, £ — 224.
From the passivity analysis of the closed loop system
we also have that, 2 — z94. Hence, it is also true
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that, 3 — 24, while 2; — 2,4 = I4. Let us denote
by Vy the steady state value of 254. The equivalent
control, u., is then seen to asymptotically converge
towards a constant value, denoted here by U, and
given by

_E-Vp~(re+Rr+rc||R)a— ,.‘;;‘.'R“/d
(rps — Rr —rc||R) 14— ?&"I_{':'R‘Vd -Vp
(2.18)

The steady state value Vj of zp4, written in terms of
U may be obtained from (2.17) as

Va=(1-U)RI, (2.19)

Eliminating U from the previous expressions we ob-
tain the steady state value of the output capacitor
voltage Vy in terms of the desired input inductor cur-
rent I;. This elementary computation is left for the
interested reader.

Since u is a discrete valued variable, we proceed
to force the actual dynamical system in the second
expression of (2.13) to behave as (2.17) in a sliding
mode sense. Let e;4 denote the error of the controller
state z,4 with respect to the ideal sliding dynamics
state za4. In other words, ea4 = 224 — 224. The error
dynamics is readily obtained from (2.13) and (2.17)
as.

.1 /1 1 Ry
62-'6(Te?m)"'a;ﬁm(“‘“w)
(2.20)
From the fact that the equivalent control may be as-
sumed to take values in the open interval (0,1), it
is easy to see that the error e,y is guaranteed to ap-
proach the condition e;4 = 0, in finite time, from any
arbitrary initial condition. The switching policy that
achieves such a sliding region is of the following form
u= % [1 + sign (z24 — 224)] (2.21)
ie.,u=1fores >0 and u =0 for e; < 0.
We have thus proven the following proposition (see
also Figure 2)

Proposition

Given a desired constant value I  for the input in-
ductor current z;. The following dynamically synthe-
sized switching policy achieves asymptotically stable
state trajectories, for the switch regulated plant, to-
wards the desired equilibrium z; = I,

1 .
u=g {14 sign (224 — 224)]
where the variables 294 and z24 are obtained as the
solutions of the following time-varying nonlinear dif-

ferential equations with arbitrary initial conditions,

Zyg = (1-

+Egé (z2 — 224)



and

b = Qe R L
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with u,, as given by (2.14) and (2.15).

3 A Passivity Based Sliding
Mode Observer

In this section we assume that the only available state
is constituted by the input inductor current y = z,.
We proceed to synthesize a sliding mode observer for
the plant dynamics, rewritten, just for convenience,
as

b= —(lew)— T4

ry = (1 u)L(rc+R)z2 L E 31
E~(1-uwVp
+——~T+~—-

22 = (1-v) B - 1 .

? T (Fc+RIC™' ™ (rc +R)C™?

y = n (3.1

Consider, then, the following dynamical observer
for the switched system (3.1)

A - _{1- _i;R;w_A _iﬂ).
o= —Q-vpe gt R
E Ve M .
+3 - (-w)7+-y-9)
b= (lmwt gL
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where h; and h; are scalar nonlinear functions repre-
senting output reconstruction error “injections” into
the observer dynamics. The state reconstruction er-
ror, defined as e = [e; €3)7 = [2; ;)T - [#, 2T is
seen to satisfy, after some rearrangement, the follow-
ing dynamics in matrix form

Dpé+ (1~ u)Jpe+Rp(u)e +Hp(e1) =0 (3.3)

where HB(el) = [hl(el) hz(el)]T.

Take as an energy storage function the quantity
Vo(e) = 1eTDge. The time derivative of such a
scalar function results in the following expression

Vole) = ~eTRp(u)e - e;hy(ey) — ezha(e;) (34)

In order to enhance the dissipation properties of the
observer dynamics while bestowig some robustness to
the observer, we use a discontinuous feedforward out-
put error injection term in combination with a linear
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damping term. The following choice of the output
error injection terms seems then natural

hi(e1) = Rae; + Wsigne; ; ha(er) =0 3.5
where W and Rs are any strictly positive constant
gains to be chosen at will.

The previous choice (3.5) of the feedforward injec-
tion terms results in a strictly negative time derivative
of the energy storage function. This quantity is given
by

Vo = —[r(u) + R e? - -Wlel (3.6)

2
rc+ R%
In other words, through the limited options offered
by the nature of the output error injection functions,
one may still enhance the dissipation structure of the
reconstruction error dynamics and thus obtain an
asymptotically stable state reconstruction error be-
haviour.

Remark

It is interesting to note that if an ideal “boost” con-
verter model is considered, i.e., one without parasitic
resistances and voltages, then the corresponding slid-
ing mode controller may be entirely synthesized on
the basis of the output variable y = z, with no need
for the output capacitor voltage variable z;. In such
a case, no need exists for an observer and, thus, the
sliding mode controller is truly an output feedback
controller. Notice that this is also the case in the
realistic model treated above if one does not insist
on providing some additional damping to the out-
put capacitor voltage closed loop dynamics through
the term 1/R;. Thus, leaving untouched the already
valid energy dissipation properties of the output cir-
cuit, results in a substantial simplification of the feed-
back controller with no need for the derived observer
(sce equation (2.17) with R; = co.

4 Closed Loop Stability As-
sessment

In this section we provide a sketch of the proof of
asymptotic stability of the closed loop system.

1. Write down, in matrix form, the equations of the
composite system, constituted by the plant, the
observer and the dynamical sliding mode con-
troller, including the ideal sliding dynamics gen-
erator.

2. Substract from the plant dynamics rows the de-
sired state dynamics and then proceed to sub-
stract the observer equations from the plant
equations to form the state estimation error sys-
tem. Finally, substract from the desired state
dynamics the dynamics of the ideal sliding dy-
namics. All this may be accomplished through



a single non-singular state coordinate transfor-
mation of the original system written in matrix
form.

3. Note that the designed controller, the ideal slid-
ing dynamics and the observation error equations
guarantee that the right hand side of the ma-
trix system is identically zero. The composite er-
ror system, in matrix form, already contains the
suitable modifications of the energy dissipation
characteristics of the original subsystems, prop-
erly introduced through dynamical feedback and
output reconstruction error injections.

4. Take as a Lyapunov function candidate the sum
of the storage functions associated to the error
subsystems with states given by 2 — 24, 2 — &
and zq4 — 24.

5. It is easy to verify that the time derivative of
this Lyapunov function candidate is, with due
thanks to the presence of workless forces, neg-
ative definite for the two possible values of the
contol action u.

6. The final argument is a slightly different version
of the fact that a feedback interconnection of pas-
sive systems ( as it is the case for the plant, the
observer and the dynamical controller) renders
an overall passive system.

5 Conclusions

In this article we have combined a sliding mode
control option with passivity based controllers in a
manner that may significantly enhance the robust-
ness properties of the dynamical feedback control
based solely on passivity considerations. The con-
trol scheme was also shown to be extendable to a dis-
continuous output feedback option including a vari-
able structure observer. The design of the observer
was also carried out using passivity considerations.
The overall stability of the closed loop system was
proved in a straightforward manner using standard
Lyapunov stability arguments.

A complete sliding mode-passivity feedback con-
troller design methodology can be developed for the
particular, but important, class of switch-regulated
systems. For this task, a general Euler-Lagrange sys-
tem formulation, such as that already given in [9],
may be adopted as a convenient starting point.

Passivity based regulators can be extended to adap-
tive schemes for systems with unknown but constant
parameters. The combination of adaptation and slid-
ing modes in a passivity based approach seems chal-
lenging and, due to its various apparent advantages,
it certainly deserves attention in future works.
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Figure 1: A realistic “Boost” converter model
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Figure 2: A Dynamical Sliding Mode Controller
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Figure 3: A Sliding Mode Controller-Observer Regu-
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