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Abstract

The linear parameterization assumption often made
in adaptive regulation schemes of nonlinear systems
can be regarded not only as a counterintuitive as-
sumption but also one with little physical signifi-
cance. In this paper, a first order Taylor series ap-
proximation is proposed that linearizes the natural
nonlinear dependencies upon the components of the
vector of unknown parameters. This approach is
shown to lead to an improved, and more realistic,
non-overparameterized backstepping design based on
input—output considerations. The results are applied
to the direct adaptive output stabilization towards
minimum or non-minimum phase equilibria of average
Pulse-Width-Modulation controlled dc-to-de power
converters of the Boost type.
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1 Introduction

In a large number of practical cases, the assumption
of perfect knowledge of the circuit parameters of dc-
to-dc converters is invalid. Ageing effects on the com-
ponents, as well as high frequency phenomena, often
alter the known nominal values. A number of adap-
tive control techniques have been proposed for the
feedback regulation of such a class of uncertain sys-
tems. One of the fundamental assumptions made in
most of the available adaptive control techniques lies
in the fact that the components of the vector of un-
known parameters enter the description of the system
in a linear fashion. In particular, a recently developed
adaptive control technique, known as the backstep-
ping technique, mainly studied by Kokotovic and his
co-workers (sec Kanellakopoulos et al [1] and Krstié
et al [4]), still uses this linear parameterization as-
sumption. For switch regulated systems, like dc-to-dc
power converters, the adaptive backstepping design
method has been used by Sira-Ramirez et al [9] from
an input-output viewpoint for generalized canonical
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forms.

Briefly, the backstepping technique consists of de-
signing temporary stabilizing controls and update
laws regulating subsystems of order 1 to n — 1 via
Lyapunov arguments. At the final step of the algo-
rithm, the real control and_the n-th overparameter-
ized update law are designed and the nth-order sys-
tem is finally regulated. The more recently proposed
version of the adaptive backstepping algorithm avoid-
ing overparameterization also reduces the order of the
controller and hence brings in more desirable stability
properties. This last scheme will be adopted in this
paper, rather than the more classical one. It is also
interesting to notice that the backstepping algorithm
is suitable for a larger class of systems than those in
pure parametric feedback form, as we will show in the
development of the paper.

In the recent literature, and thanks to the work of
Utkin [11] on Variable Structure Systems, some slid-
ing adaptive schemes have been proposed with spe-
cial concern for robustness (see [10] and [2]). Simi-
larly, discontinuous adaptive feedback PWM control
of dc-to-dc power supplies has been defined in [8].
In fact, a simpler alternative based on a suitable av-
erage (i.e. infinite frequency) approximation of the
dc-to-dc converter is usually proposed, with proofs of
validity (sec [7]). Unfortunately, the average PWM
model, thus obtained, is evidently not transformable
into a “pure parametric fecdback form” as control in-
put derivatives invariably appear at the final stage -
of the algorithm . This is due to the fact that the
relative degree of the regulated output is less than
the state dimension. Hence, rather than a classical
input-state backstepping strategy, an input-output
viewpoint is chosen, resulting in a dynamical duty
ratio adaptive controller. It should be pointed out
here that if the inductor current represents the regu-
lated output, the so-called zero-dynamics associated
with the output stabilization problem leads to the
minimum-phase case, i.e. a stable duty ratio dynam-
ics when the output is forced to zero. However, when
the capacitor voltage output is to be regulated, the



corresponding zero-dynamics is unstable around the
equilibrium point and a non-minimum phase case is
at hand. A feedback resetting strategy developed re-
cently in [5] tackles this problem.

A need has long been felt for overcoming the non-
physical character of the linear parameterization re-
striction (see [6], [2] and [3]), explicit in the model
assumptions of the adaptive backstepping procedure.
In average models of dc-to—dc power supplies, non-
linear parameterization is inherent, which directly in-
volves the lumped circuit component values R, C, L
and E. This case may now be handled by using the
improved backstepping algorithm presented in this
paper. Our scheme takes into account the nonlinear
parameter case and proposes the use of a first-order
Taylor approximation thus enlarging the class of sys-
tems to which the algorithm is applicable.

In Section 2 of the paper, a statement of the prob-
lem is established through the description of the non-
linearly parameterized Boost dc-to-dc converter, the
extension to the Buck and Buck-Boost converters
being straightforward. Section 3 presents the non-
overparameterized backstepping regulation towards
a minimum phase equilibrium point for the average
Boost converter model. Section 4 tackles the non-
minimum phase case. Finally, Section 5 presents
some simulation studies that highlight the validity of
the proposed adaptive control algorithm.

2 Problem statement: the Boost DC—
to—-DC converter

In this section, we present the switchmode and the
average PWM model of the Boost dc-to-dc power
converter to be treated.

Consider the Boost converter circuit, shown in Fig-
ure 1. The system of diflerential equations, describing
the inductor current I(t) and the capacitor voltage
V(t), is given by B

Ity = -—z(l -u)V({)+ A

V) = Sl-wI@- = Ve )

where L, C and R are, respectively, the inductance,
capacitance and resistance values of the circuit com-
ponents. Let us note the physical assumptions: L, C
and R are nonzero. The quantity E represents the
constant value of the external voltage source.

Let us denote the values of the several parameters
defining the circuit equations as

01=L ) 02:0 H 93=R 3 94=E (2)
with 0 = [61,0,,03,04)7 € Q C R%. The compo-
nents of the unknown parameter vector, belonging to
a given compact set §2, are assumed to be constants
{(meaning slowly time-varying unknown parameters).

We shall be successively considering the inductor
current I(t) and the capacitor voltage V'(t) for the
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regulated output function, here denoted by y.

The control input function u is the switch position
function taking values in the discrete set {0,1}. A
PWM feedback strategy for the specification of the
switch position function u, occurring at regularly
sampled instants of time is usually specified as fol-

lows:
°wz 1 forta< t < te+pa(te)T
- 0 forty+ps(te) T <t<t+T

e+ T =ty ; k=0,1,... (3)

where pi4(t) is the value of the actual duty ratio func-
tion at the sampling instant £ and the sampling pe-
riod, T, is assumed to be constant. This actual duty
ratio determines the width of time At;

( Aty = pa(te)T) where u = 1 between two sam-
pling instants. This corresponds exactly to a Pulse
Width Modulation of the control in order to achieve
regulation.

The actual duty ratio function is obtained from a
bounding operation carried out on the feedback com-
puted duty ratio function , denoted by u, which re-
stricts the values of u to the closed interval [0, 1].
This physical restriction results in a local stabiliza-
tion result, as it is well-known in the literature.

A classical and direct output stabilization of sys-
tem (1), via control (3), would be difficult to perform
since it would require an ezact discretization proce-
dure and a nonlinear discrete time duty ratio feed-
back design. For this reason, a simpler alternative
is usually proposed which is based on a suitable av-
erage (i.e. infinite frequency) approximation of the
converter model. In spite of the fact that the aver-
age approximation deteriorates for low sampling fre-
quencies, its validity has been well established (see
Sira-Ramirez [7] ).

This assumption of infinite sampling frequency re-
sults in a smooth nonlinear average system, in which
p is interpreted as the control input, i.e. the equiva-
lent control in Sliding Mode theory ( see Utkin [11]).
Therefore the problem can be advantageously treated
as a standard nonlinear feedback controller design
problem. The Average Model for the PWM controlled
Boost converter (1), (3), is then obtained by formally
replacing the switch position function u by the duty
ratio function g, and the state variables by their av-
erage

. [}

G = —%(l—u)CHf 1=G

. 1 1

G2 = Z(l - 1) - 0—20—3('2 (4)

For a constant value of the duty ratio function, cor-
responding to a desired set point, p = U,

with 0 < U < 1, the equilibrium values of the
average PWM converter state variables are readily
obtained from (2) and (4) as

aU) =gioy 5 @)=y



3 Backstepping Regulation towards a
minimum-phase equilibrium

What we first aim at via this dynamical non-
overparameterized adaptive backstepping controller
is to achieve the feedback regulation of the average
input inductor current (;(t), towards a known, con-
stant, equilibrium value, denoted by X; = (1(U).
Thus, indirect feedback regulation of the output ca-
pacitor voltage is accomplished. Let us note that
the traditional backstepping dynamical controller as-
sociated with the Parametric Pure and Parametric
Strict Feedback Canonical forms, cannot be applied
here, since “control” input and its first-order time
derivative naturally appear in our proposed regula-
tion procedure for the average Boost converter model
(4). The approach leads to an adaptive controller
which is dynamical in nature. We will hence proceed
to apply a modified version of the backstepping al-
gorithm to the synthesis of a non—overparameterized
adaptive feedback controller. Then, once the adaptive
controller expressions are found, the average state
variables (i, (2, appearing in the feedback controller
are substituted, respectively, by the actual (i.e. non-
averaged) variables I(t), V(t).

Now, let the average PWM Boost converter model
(4), where 7 is the average value of the output signal,
i.e. the inductor current I(t).

Let us recall that the parameters 8; , i = 1,...,4
represent the actual values of the uncertain param-
eters, as given by (2). Instead of the true values,
@ = [61,...,6,)7, which are unknown, a controller
will be des1gned using parameter estimates

= [01, . 9 )T

Assumptlon A1l: In the following, when functions
of ¢ and 6, say 4(¢,0) are used, we will introduce
the error function ¥(¢,8) — (¢, 5) and we will con-
sider only the_truncated first-order Taylor approxi-
mation ——1(( ,0)(0 0) assuming that the truncated

term 0((9 0) - 0)) will not hamper the closed-
loop stability of the system. This truncation will be
validated in the simulation study.

Step 0
Let 2; stand for the output variable error, defined as
n=9~-0U)=0G-0({)

According to the average system model equations (4)
the time derivative of the output error z;, is of un-
known nature and given by

. 1 04

=-—(1- — 5
=g (=Wt g (5
An estimate of the time derivative of the error vari-
able z; may be obtained directly from (5) by replacing
the components of the unknown parameter vector ¢

by their estimated values 8, .

= 1 a
y ——x‘(l o /‘)CZ + ‘24‘ = 71«.’ 0; l") (6)
01 01

zZ =
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By using expression (6) and the first-order Taylor ap-
proximation assumption, we can rewrite expression
(5) as follows :

9 o ~ 5‘11T
H = n+@-0T2L 7
1 1+ ( A) 39 )
with:ﬂs=[k‘-—")£ﬂ 00 ,L]
88 o2 8,
Step 1
Let us impose the pseudo-controller error zs:
29 = 2'1 +c2 (8)

where ¢; is a positive design constant.

In fact, in the previous literature, z3 corresponds to
the error between (3, which temporarily plays the role
of subsystem (5) control, and the stabilizing control

ay, given by-
01(¢1,¢2,0) = G —ar (G = G (U ))+;5J£2.

Choosing T’ to be a positive definite dlagona.l matnx
whose elements will be called parameter adaptation
gains, let us then consider a scalar positive definite
Lyapunov function of the form

V= [z, +(8-9)Tr-1(6 - )
with respect to which one wants to stabilize the one-
dimensional subsystem derived from (7) and (8):

T ‘9’71

29— 121+ (0 — 9) 9)

s =

The time derivative of V; is then giyen by:

Vi =22 — 22+ (8 —9)Tr-! (—§+ nT %&T

Let us denote the temporary update law, the so-called
tuning function 7, as follows:

~ T
Tl(c:”;/‘) =2 r %
By using this tuning function as the update law:

g = 71, and by considering no pseudo controller error
(i.e.: 22 = 0), subsystem (9) is stabilized around the
equilibrium point: z; = 0, i.e. {1 = (1(V),

since the Lyapunov function derivative is reduced to
Vi=-c zf.

However, as 7; is not the actual update law

(ie. 9+ 71) and as z; # 0, we hence obtain:

. ~rdn”

2 = 22—6121+(0—0)T—al£-

‘./1 = 2i{22 — clzf + (9 - E)TF_I (T1 o 5)
Step 2

At the second and final stage, the control and the ac-
tual update law are simultaneously designed in order
to stabilize the whole system with respect to the new
Lyapunov function V;, given by:
Vi=Vitid=4[d+4+0-0Tr10-9)]
The expression of 2, is derived from (6) and (8):

1- 9,
zz=c1z1~(—,\”)£2-+=é. (10)
0 0



Then, the pseudo-controller error z; dynamics is
given by:

o~

= 0171(C:9,I‘) + S - !;%L + esl
0 o 8,
LO=0G8 _ (-ph(cop)
02 DN

with  7(¢,0,0) = S0 o

And, as for 7; defined in ( 6), the estimate 7 is writ-
ten as follows:

A

Z = 61‘71(C9ﬂ)+3=‘ : +‘4$1

+(1,"I-')$20; _ (1:#)1:“,0,&) (11)
o o

Finally, we derive from (11) and the first-order Tay-
lor approximation assumption the expression of the
derivative of the pseudo—controller error z;:

. % o T - T
= h+(@-0T(a2 —%ﬂ%@) (12)

with : -"—Z%T = [0 =850 (1-n) G 0]
0;0 02”

The dernvatlve of V5 is then derived from (12):
Vo = Vi422
= nz— 12} + zp25(0 - 9)TT!

0’71 (l ) 3’7’2 ~
4T -
[T‘ =(ays 5 o )

Then, we impose the pseudo-control error dynamics:

~

29 = —C323 ; eg > 0 (13)

Moreover, the update law 8 is chosen in order to make
the expression of V, mdependent of (0 0)

g=T [(zl + clzg)—'lé — 2 171‘243 ]

which gives in the ongmal coordmates (¢1,¢2) the ex-
pressions:

Al=pac)
§=T B(Mo’l— ) (14)
B$<1
A

*[(1 + )G - CI(U))al
ol - 01(1 = #)Cz]

with A(C,6,p) =

—(1-p) (& - CI(U))0191 +0,—(1- F)Cz

B(¢,0,p) = T
2

and the matrix of adaptation gains: I =
diag{F,T',T3,T4}.

Finally, the actual control is readily obtained in an
implicit manner, as a solution of a nonlinear time-
varying differential equation, derived from (10), (11)
and (13):
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f= %{ ~e162(¢1 — Cx(U))+*[¢1+cz
+m(-*—'i,‘sﬂi)1((1 -G-8y  (15)

“ryA — (1 w(Sa=hiizny)
2Vy—

Remarks :

- A2: A non-restrictive assumption, which has a
physical meaning since generally {o(U) # 0, is de-
rived from dynamical expression (15) of the control
and is given by : (3(f) # 0 Vt. Hence, this sin-
gularity of the controller can always be conveniently
avoided with a judicious choice of the initial condi-
tions of the system.

- A3: The input dependent state coordinates trans-
formation linking the original average state variables
¢1 and {3 to the new coordinates (z1,22), respec-
tively, the output error and the pseudo—controller er-
ror, given by: z; = {; — G(U)

27y = 2=(onlG :-" 2 4 e(G - G(U))

is locally ixllvertible, since the Jacobian matrix of this
transformation is non-singular everywhere except at
persistently saturated values of the duty ratio func-
. o 1 0

tion u = 1: %= e ﬂlo-

Note that the local non—singula:rity of the Jacobian
matrix is equivalent to the local observability of the
average system (4) (see [7]).

Finally, provided that assumptions A1, A2 and A3
are satisfied, and with the additional assumption A4:
4c1c3 > 1 - which corresponds to a certain design of
the parameters ¢; and ¢z —, if one uses the parameter
update law (14) and the dynamical control (15), the
time derivative of the Lyapunov function V3, is given
by: Va = 2122 ~ c12f — c222, and V2 is a negative
definite function.

Then, an asymptotically stable behaviour to zero
can be guaranteed for both the output error z;
and the pseudo-controller error z, while achieving
bounded evolution of the parameter estimates @ (see
proof in [1]). The regulation around the original av-
erage equilibrium point ({1,¢2) follows immediately.
Moreover, note that the proof of local asymptotical
stability for the initial exact system (1) ( instead of
the approximated system with A1) is given in [3].

Finally, the actual duty ratio synthesizer for the
PWM regulated system is obtained by bounding the
computed controller u to the closed interval [0, 1], and
by replacing the average state variables (3, (3, appear-
ing in the controller expressions, respectively, with
the actual state variables I(t) and V(¢). The PWM
feedback strategy is then evidently derived from (3).

Note that in this case of the inductance current
output, and when the estimated parameters equal the
true ones ( non-adaptive case), the zero-dynamics —
i.e. when 2; = 0 —, derived from the Fliess General-



ized Observability Canonical form, are stable around
p = U and given by ( see [9]):

e (1—w@-U-
l‘—gzé;(l_U)z(l w2 =U—p).

4 Backstepping Regulation towards a
non minimum-phase equilibrium

In this section, we briefly give the main results for
the regulation of the Boost dc-to-dc converter out-
put capacitor voltage. It is well known that if the
output capacitor voltage V(t) is taken as the regu-
lated output, then the system is non—minimum phase
(see [7]). In such a non-minimum phase case, our
proposed method leads to an unstable adaptive con-
troller. Then, as in a paper of Sira-Ramirez et al (
see [5]) , a solution consists of a controller resetting
strategy.

Average model with V as output

1
G = 9_2(1 —I‘)Cz—’ez—gs'ﬁ n==0
: 1 A
G = o (1-p) + 5
with 6, = L ; 6&=C ; 63=R ; 04=E
G = Vaw ; (e=1Iaw and p=ug.

Parameter estimation update law
A((l-“0!$1—94)
X L =Pa(1-u)C
f=r | B(E=RL= (16)
BSL
8y

with ACDM)= (-l - 5

—-a&i(U)+ ?}2‘(1 —zl‘a)cz]

and B(GO,m) = gl +al - )G -aW)
~ (o1 = 72=) (6 = Os(1 — w)Ga))-

020,
Adaptive non-overparameterized duty ratio

= %[_Eéz[‘z(l - )Gt — B5(1 ~ w)éa)
+%T—‘0§)_(a4 - (1 = I‘)Cl) —_ cl(cl - ’0710:)((1 - CI(U))
HerlGr ~ G (U)) - (2=Blemayy o) 4 ¢, )

8385

+2(r, a8 4 1y
8205 02 02

Remark : The same assumptions Al, A2, A3 and
A4 as in the previous Section must be satisfied in
this regulation scheme.

Zero-dynamics derived from the F.G.O.C.
Form: ji=—183(1-p)*(U - p).

Following easily from the phase-diagram, this zero-
dynamics is unstable around p = U and u =1,

(17)
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which are therefore non-minimum phase equilibrium
points. A control resetting strategy is then proposed
in order to tackle this case, and consists in producing
a quasi-sliding motion around the desired equilibrium
point u=U :

Let 0 < 6 < €. The resetting strategy is as follows :

if forsome t, |p(t)-Ul=c¢,
plt) = then pu(tt)=U -8 sign(si)

otherwise, pu(t) obeys equation(17)

Then, it is easy to prove that, with the simple choice
of the sliding surface s = u—U, the attractivity condi-
tion of this surface at these instants t* is now satisfied
and given by:

s§=-8|pu|<0.

5 Simulation results

Simulations were done for the Boost converter model
in conjunction with the dynamical adaptive PWM
controller described in Section 3 for the regulation of
the input inductor current variable I(t) of the con-
verter. This kind of converters is used in the weld-
ing industry or elsewhere a constant voltage supply is
needed. The nominal and perturbed versions of this
converter model have been studied in simulation. The
perturbation has consisted of an unmodelled stochas-
tic but bounded noise ~denoted by ¥(t)- acting on the
circuit through the external source voltage E. Hence,
v(t) is an unmatched additive disturbance, as shown
in the following perturbed model, used in simulations:

iy, = -%(1—,;) V() + (E%(t)) y=1(t)
V) = é(l—u) I(t)-—fla—v(t)

The following “unknown” values of the circuit param-
eters were used for simulation purposes

C =181.8uF;L=0.27TmH; R = 2.44Q; E = 14.66V
The sampling frequency was set to 100K Hz which
corresponds to about 500 clock pulses ( by using a
50 MHz normal PC) for each sampling period . One
could even have better computational allowances by
decreasing the switch frequency but this may increase
chattering. Let us also note that the MOSFET tran-
sistor is able to switch at this frequency value and is
resistant to this power value ( about 375 Watts).

As for the random input noise ( expressing the elec-
tromagnetical pollution, the resistive effect, the sen-
sor error...), its amplitude was set to 0.5 Volts.

The desired equilibrium value for the average input
inductor current was set to I(t) = 15.75 amp. The
obtained steady-state equilibrium value for the aver-
age output capacitor voltage was V = 23.77Volts.
The duty ratio function corresponding to this equi-
librium is g = U = 0.38.



The regulated output variable, /(t), is seen to con-
verge asymptotically towards the desired equilibrium
value in the nominal and perturbed cases ( respec-
tively in Figure 2 and 3), pointing out good perfor-
mances in robustness. The bounded evolution of the
parameter estimates, a small portion of the switch-
ings actions as well as the duty ratio function and
the perturbation noise are also shown in the figures.

Conclusion : An input-output adaptive PWM
feedback regulation scheme has been applied on a
Boost converter model taking into account nonlin-
ear parameterizations, relaxing by the way the non-
physical linear parameterization assumption. This
scheme has been validated in a simulation study, as
well as in a theoretical work [3].
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Fi1G. 1- Boost converter model
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