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Abstract

A passivity based sliding mode controlle is proposed
which achieves the output feedback stabilization of a
realistic model of a switchmode DC-to-DC Power Con-
verter of the “Boost” type. The possibilities of us-
ing a state observer of discontinuous nature is also ex-
plored in detail. Suitable “damping injections” and
“energy shappings” are shown to be independently ac-
complished, via discontinuous feedback and discontin-
uous fecdforward output injections, for both the regu-
lated plant and the sliding mode observer error dynam-
ics, respectively.

Keywords : DC-to-DC Power Converters, Sliding
Modes, Passivity Based Output Feedback Regulation.

1 Introduction

In this article an output fecdback controller is pro-
posed for the stabilization of a switch regulated DC-
to-DC power converter of the “boost” type. The de-
sign entitles a suitable modification of the dissipation
energy properties of the desired closed-loop stabiliza-
tion error dynamics and of the state reconstruction
error dynamics. This is achieved through dynamical
discontinuous feedback and discontinuous feedforward
output injections, respectively. We first obtain, under
the assumption of full state availability, a dynamical
passivity-based sliding mode fecdback controller. An
alternative observer-based output feedback scheme is
next proposed using a sliding mode observer whose de-
sign is also based on passivity considerations. In the
controller and observer designs the workless forces, in-
herent in the open loop dynaniics of the system and
of the observer, are never cancelled through fecdback
nor through the fecdforward output injections. In this
manner, the controller-observer structure is consider-
ably simplified with respect to other schemes based on
exact linearization. .
Sliding mode conttol of dc-to-dc power converters
was first treated by Venkataramanan el al [1] from an
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approximate lincarization viewpoint. The topic was
later treated by Sira-Ramirez [2], from a nonlinear dif-
ferential geometric viewpoint. Connections of sliding
mode controliers for dc-to-dc power converters with
singular perturbation techniques, involving the natural
time scale separation properties of the average models
of the power converters, was treated by Sira-Ramirez
and Llic-Spong in {3]. An exact linearization approach
for sliding mode controlled dc—to- de power converters
was also proposed by Sira-Ramirez and Ilic-Spong in
[4]. More recently, sliding mode control of dc-to-de
power converters has been approached from an Ex-
tended Linearization viewpoint in the work of Sira-
Ramirez and Rios-Bolivar [5]. Passivity based con-
trollers for Pulse-Width-Modulation controlled models
of ideal dc-to-dc power converters are also proposed in
Sira-Ramirez and Ortega [7].

Scction 2 of this article presents a passivity-based
sliding mode controller for a realistic model of a “boost”
converter. The sliding mode controller, which turns out
to be dynamniical in nature, is derived under the assunip-
tion of full state availability for feedback. Section 3 is
devoted to derive a sliding mode observer by means
of passivity considerations. The feedforward injection
terms act as limited control variables which enhance
dissipativeness of the estimation error energy. The over-
all asymptotic stability of the closed loop controller is
presented in Section 4. The last section is devoted to
some conclusions and suggestions for further work.

2 A Passivity—Based Sliding
Mode Controller

Consider the following realistic model of the “boost”
converter circuit proposed in the work of Czarkowski
and Kazimierczuk, [8], shown in Figure 1
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where L and C and R are respectively the input



immductance, the output capacitance and the load resis-
tance of the converter circuit. The variables z; and
29 represent, the inductor current and the capacitor
voltage, respectively. E is the voltage of the external
source and u is an ideal switch position function taking
values on the discrete set {0,1}. The control depen-
dent resistance r(u) is given by r(v) = vy + urps +
(1~ u)Rr(1 — u)r¢)|R, where the symbol r¢||R stands
for the resistance of the parallel connection of r¢ and
R. The resistances rp and r¢ represent parasitic resis-
tances associated with the input inductor and the out-
put capacitor, while rps and Rp are “ON” resistances
associated with the transistor and diode constituting
the switching arrangement. The voltage source Vg rep-
resents a parasitic voltage appearing across the diode
during the conduction stages. In order to avoid non-
minimum phase problems, the output of the converter
will be taken to be the input inductor current z;. How-
ever, for the time being we assume that the entire state
vector is available for measurement (see [7])

For ease of reference we rewrite equation (2.1) in ma-
trix formn as

Dpé+ (1 - u)Jpz +Rp(u)o = Ep(u)  (22)
" where
L 0 R
o= [55) ey,
= Lo i 0
Rp(v) = [ i) ]
rc+n .
Ep(u) = [ E- (1 e ] (23)
The total stored energy of the system is given by
H= -;—zT‘DBx = %(sz + Cz) (2.4)

The time derivative of the energy function H along the
controlled trajectories of (2.1) result in

H(t) = 2T Ep(u) ~ 2" Rp(u)z (2.5)
= zl(E--(l-u)Vp)—rC:_‘Rzg'
~r{u)z? :

< o E

and upon integration of the previous expression on an -

arbitrary time interval {0,1], the system is seen to be
passive from the input source E t6 the output z; (scc
Ortega et al [9]). Note that the “forces” represented
by (1 — u)Jpzx are indecd workless due to the skew-
symmetry of Jp

Let z4(t) denote a desired trajectory for the state
variables of the “boost” converter (2.1). Denoting by
&(t) the error vector trajectory z(t) —4(t), one obtains
from (2.2) the following expression

Dpi + (1~ u)Tps + Rpi = y(u) . (26)

where

lj»(u) =&p(u)—(Ppra+ (1 —w)Tpra + Rprq) (2.7)

A desired damping can be achieved for the error sys-
temn through the injection, to the dynamics (2.6), of a
suitable term of the form

Ripi = [ Usi ]z D RLRy > 0 (28)

0 1/R,

Let the desired damping term be specified then by the
Rpai = (Rp +Ryp)i. One finds immediately that

Dpé+ (1 - u)Tpi + Rpad = ¥(u)  (2.9)

with

Y(u) = Eplu) (2.10)

~[DPpzs+ (1 — u)Tp2ds+ Rpze ~ Ripi)

If (1) were identically zero, the resulting error dynam-
ics, or the desired error dynamics

Dpz + (1 — u)Jpi + Rpai = 0 (2.11)
would be asymptotically stable to zero. Indeed, the
error system (2.11) has - assocnated total stored en-
ergy, given by: Hy(t) = -:c TDgi. The time derivative,
along the trajectories of (2 11), satisfies, for some con-
stant and positive scalar a, the followmg property,

Ha(t) = —2TRpa(u)z < —oj|? (2.12)

The condition ¢(u) = 0 can be explicitly expressed

as
Lig+ r(u)za+ (1 - u) R T24
+ R
—Rl(xl == xld) = (1 £ u)Vp
Cizd - (l = u) R Z1d + L 2ad
rc+ R re+ R

—Ri(z2 —200) =0 (2.13)
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Let 214 = Iy, be the desired constant steady state
value of the input inductor current. It is easy to sec
that, under this circumstance, the first expression in
(2 13) is somewhat contradictory. Indeed, note that u
is a variable that takes values in the discrete set {0,1}
while the functions ¢; and z,4 are at least continuous
functions of time. In other words, the above pair of
equations can only be exactly satisfied as long as « it-
self is a continuous function, which is a contradiction
unless u is constant. However regarding u as a constant
destroys all possibilities of feedback regulation. Hence,
the expressions (2.13) must be regarded as holding valid
in an equivalent control sense, i.e., in an average sense
(sec Utkin [10]). We therefore denote u as an equivalent
control ueq and 224 as zp4.

From the first expression in (2.13) one then obtains
the value of the virtual control input, 4. that renders



the first component of ¥ identically zero in an average

sense.
_ 0(11 , sz)

Upqg = 14
eq b(ZQ,{) (2 )

with
a(xlszd) = ’cl(:l)] —_ Id) + E — ‘/F'
R
—(re + R +rollf)la - — 2

c + R
(rps — Rr —r¢liR)a

b(z24)

= Vi (2.15)

- rc+ R7-2

A well known necessary and suflicient condition for
the existance of a sliding regime is constituted by the
following condition, which was rigorously obtained in
o (21,224)

al®y, zad
0 < Ueg = B(z20)
The above conditions actually delimits a time-varying
region in the space of the variable z34 where such a
sliding regime exists.

The second expression in (2.13), can also be regarded
as being valid in an average sense, when evaluated for
the obtained equivalent control input v = u,,. The
resulting differential equation actually constitutes an
ideal sliding dynamics. Such dynamics is consistent
with both the desire of having z,4 = I,; and also with
the fact that the relation ¥ = 0 holds valid in an aver-
age scnse.

<1 (2.16)
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7‘(;+Rd rc-l-RM

1
—E-(:Cg - z;d) =0 (2.17)

Ciag — (1 — u,y)

In fact, the expression (2.17) qualifies as a dynanii-
cally generated duty ratio function corresponding to the
“infinite switching frequency” pulse width modulation
feedback strategy, which is equivalent to the proposed
ideal sliding mode behaviour ( sce {2] for details).

From the previous developments, it is clear, at least
in an average or ideal slidng mode sense, that the “con-
troller” state variable z34 satisfies, zaq — 254. From
the passivity analysis of the closed loop system we also
have that, 23 — 234. Hence, it is also true that,
Ty — 4, while 2y ~ 214 = I;. Let us denote by V;
the steady state value of z34. The equivalent control,
Uleq, i3 then seen to asymptotically converge towards a
constant value, denoted here by U, and given by

U= E—~Vp—~(rp+ Rp+rc||R)Iy — #Vd
(rps — Rp ~ r¢l|R) 14 - ;%ﬁvd -Vr
(2.18)
The steady state value V; of 234, written in termms of U
may be obtained from (2.17) as

Va=(l-U)RI4

(2.19)

Eliminating U from the previous expressions we obtain
the steady state value of the output capacitor voltage

V4 in terms of the desired input inductor current Iy.
This elementary computation is left for the interested
reader.

Since u is a discrete valued variable, we procecd to
force the actual dynamical system in the second ex-
pression of (2.13) to behave as (2.17) in a sliding mode
sense. Let eqq denote the error of the controller state
x94 with respect to the ideal sliding dynamics state 244.
In other words, €34 = 234 — z24. The error dynamics is

readily obtained from (2.13) and (2.17) as.

. L/ 1 RI4 (= uay)
2=7C (E+rc+3)”“ Clrc + R) 7~ Y
(2-20)
From the fact that the equivalent control may be as-
sumed to take values in the open interval (0,1), it is
easy to scc that the error €24 is guaranteed to approach
the condition eg4 = 0, in finite time, from any arbitrary
initial condition. The switching policy that achieves
such a sliding region is of the following form

1 .
us g {1 + sign (224 ~ 224)) (2.21)
ie,u=1fores>0and u=0 fore; <0.
We have thus proven the following proposition (see
also Figure 2)

Proposition

Given a desired constant value I4 for the input induc-
tor current z;. The following dynaniically synthesized
switching policy achieves asymiptotically stable state
trajectories, for the switch regulated plant, towards the
desired equilibrium z; = I,

1 .
=3 [L -+ sign (224 — 224))

where the variables 2,4 and z94 are obtained as the solu-
tions of the following time-varying nonlinear differential
equations with arbitrary initial conditions,

R 1

Zd = (1 - ueq)(rc + R)C'Id - (7'C+ R)CZZd
1
+m(32 —~ 22d)
and
20 = (1-1) R Zyq - ! x
2d = (TC+R)C' 1d (rC+R)C*‘2¢l

1
—m(zz ~ Z34)
with ue, as given by (2.14) and (2.15).

3 A Passivity Based Sliding
Mode Observer

In this section we assume that the only available state
is constituted by the input inductor current y ==z



We proceed to synthesize a sliding mode observer for
the plant dynamics, rewritten, just for convenience, as

. R r(u)
# = —(1- u)mu 7o
E—(1-uVp
1
&, = (1—u) R Ty — ! z
2 = e+ RC" " e+ RC™
y = n (3.1)

Consider, then, the following dynamical observer for
the switched system (3.1)

T R . r(u) .
)y = —(l—u)mx2 L Ty
E Ve . Iy .
tT-0-w)pr+ -9
S P S S
2 = (1-u e+ BC " e+ B2
hiy N
+E(y“y)
g = & (3.2)

where hy and hy ate scalar nonlinear functions rep-
resenting output reconstruction error “injections” into
the observer dynamics. The state reconstruction erior,
defined as e = [e; eo]7 = [2, 25T - [#y #5)7 is seen
to satisly, after some rearrangement, the following dy-
namics in matrix form

Dpé + (1- wTpe + Ro(u)e + Hple) =0 (3.3)

where Hp(er) = [hi(er) ha(e))]T.

Take as an energy -storage function the quantity
Vo(e) = $eTDge. The time derivative of such a scalar
function results in the following expression

Vo(e) = ~eTRp(u)e — erhy(er) — e2ha(e;)  (3.4)
In order to enhance the dissipation properties of the ob-
server dynamics while bestowig some robustness to the
observer, we use a discontinuous fecdforward output er-
ror injection term in combination with a linear damping
term. The following choice of the output error injection
terms secms then natural
hl(el) = R361 + Wsignel H h;(el) =0 (35)
where W and Rj are any strictly positive constant gains
to be chosen at will.

The previous choice (3.5) of the feedforward injection
terms results in a strictly negative time derivative of the
energy storage function. This quantity is given by

Vo = — [r(u) + Ro)e} -

= Wileid (36)

_ 1
7'C'+R‘32

In other words, through the limited options offered by
the nature of the output error injection functions, one

may still enhance the dissipation structure of the recon-
struction error dynamics and thus obtain an asymplot-
ically stable state reconstruction error behaviour.

Remark

it is interesting to note that if an ideal “boost” con-
verter model is considered, i.e., one without parasitic
resistances and voltages, then the corresponding slid-
ing mode controller may be entirely synthesized on the
basis of the output variable y = z; with no necd for the
output capacitor voltage variable z5. In such a case, no
necd exists for an observer and, thus, the sliding mode
controller is truly an output fecdback controller. Notice
that this is also the case in the realistic model treated
above if one does not insist on providing some addi-
tional damping to the output capacitor voltage closed
loop dynamics through the term 1/R;. Thus, leaving
untouched the already valid energy dissipation proper-
ties of the output circuit, results in a substantial sim-
plification of the feedback controller with no need for
the derived observer (sec equation (2.17) with Ry = oo

4 Closed Loop Stability Assess-
ment

In this section we provide a sketch of the proof of
asymptotic stability of the closed loop system.

1. Write down, in matrix form, the equations of the
composite system, constituted by the plant, the ob-
server and the dynamical sliding niode controller,
including the ideal sliding dynamics generator.

2. Substract from the plant dynamics rows the de-
sired state dynamics and then procecd to substract
the observer equations from the plant equations
to form the state estimation error system. Fi-
nally, substract from the desired state dynamics
the dynamics of the ideal sliding dynamics. All this
may be accomplished through a single non-singular
state coordinate transformation of the original sys-
tem written in matrix form.

3. Note that the desigued controller, the ideal slid-
ing dynamics and the observation error equations
guarantec that the right hand side of the matrix
system is identically zero. The composite error
system, in matrix form, already contains the snit-
able modifications of the energy dissipation char-
acteristics of the original subsystems, properly in-
troduced through dynamical fecdback and output
reconstruction error injections.

4. Take as a Lyapunov function candidate the sum of
the storage functions associated to the error sub-
systems with states given by = — 24, 2 — # and
Zd — 24.

- 5. It is easy to verify that the time derivative of this
Lyapunov function candidate is, with due thanks



to the presence of workless forces, negative definite
{or the two possible values of the contol action u.

6. The final argument is a slightly different version of
the fact that a feedback interconnection of passive
systemns ( as it is the case for the plant, the observer
and the dynamical controller) renders an overall
passive systemn.

5 Conclusions

In this article we have combined a sliding mode control
option with passivity based controllers in a manner that
may significantly enhance the robustness propertics of
the dynamical feedback control based solely on passi-
vity considerations. The control scheme was also shown
to be extendable to a discontinuous output fecdback
option including a variable structure observer. The de-
sign of the observer was also carried out using passivity
considerations. The overall stability of the closed loop
system was proved in a straightforward manner using
standard Lyapunov stability arguments.

A coniplete sliding mode-passivity feedback controller
design methodology can be developed for the particular,
but impottant, class of switch-regulated systemis. For
this task, a general Euler-Lagrange system formulation,
such as that already given in [9], may be adopted as a
convenient starting point. )

Passivity based regulators can be extended to adap-
tive schewes for systems with unknown but constant
parameters. The conbination of adaptation and sliding
modes in a passivity based approach secms challenging
and, due to its various apparent advantages, it certainly
deserves attention in future works.
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FIGURES

Figure 1: A realistic “Boost” converter model



