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Abstract

An alternative adaptive scheme to achieve output track-
ing for nonlinear systems with parametric uncertainties is
considered. The proposed approach is based upon a com-
bination of the adaptive backstepping design method and
a Sliding Mode Control (SMC) scheme to design dynam-
ical adaptive sliding mode controllers and provide robust
output tracking even in the presence of unknown disturb-
ances. The validity of the proposed approach, regard-
ing tracking objectives and robustness with respect to
bounded stochastic perturbation inputs, is tested through
digital computer simulations.

1 Introduction

During the last few years a series of successful Lyapunov-
based adaptive nonlinear procedures [1]-[4] has been re-
ported. These systematic backstepping procedures al-
low the recursive design of adaptive nonlinear controllers
for classes of uncertain systems transformable into either
the parametric-pure or parametric-strict feedback forms.
Moreover, the backstepping algorithm guarantees global
regulation and tracking properties when the controlled
plant belongs to this latter class of systems.

An important and desirable feature for any control
design method dealing with uncertainties is robustness in
the presence of disturbance inputs. This aspect becomes
crucial in output tracking tasks because disturbances
can deteriorate the closed-loop performance in such a
manner that asymptotic tracking may be lost. In [6},[§]
it was shown that parameter adaptation in an adaptive
backstepping algorithm is -affected by unmatched
disturbance inputs and, as an alternative to guarantee
robust and asymptotic stabilization of uncertain systems
in the presence of undesirable perturbation inputs and
unmodelled dynamics, combined backstepping and
sliding mode control approaches were proposed.

In [1] it was assumed that full state measurement is
available for the design of output tracking controllers,
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whereas in [2],[4] only the output is available for feedback,
requiring the use of stable filters and estimated values
of the unmeasurable state coordinates. Observed-based
schemes for parametric-strict feedback nonlinear systems
can guarantee an input-to-state stability property ([5]).

Here we consider the output tracking problem of uncer-
tain nonlinear systems with the assumption of full state
measurement, and propose a combination of the adaptive
backstepping technique and input-output linearization,
in conjunction with SMC, in order to design adaptive
sliding mode output tracking controllers and guarantee
robustness with respect to undesirable additive perturb-
ation inputs »(t). Furthermore, a modified version of the
non-overparameterized adaptive algorithm in [3] is pro-
posed, which guarantees a more robust and better transi-
ent performance of parameter adaptation and achieves a
more direct interpretation of the design parameters with
respect to the closed-loop performance.

2 Backstepping design of adaptive slid-
ing mode output tracking controllers

In this section we propose a backstepping-like proced-
ure to design adaptive sliding surfaces on which a sliding
regime may be induced using SMC, and achieve asymp-
totic output tracking. Consider the uncertain nonlinear
system
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where £ € R" is the state, u € R the input, y € R the
output, § = [01,...,0,]7 a vector of unknown constant
parameters, h(£) a smooth function on ®" with A(0) = 0,
and go, fi, 0 < i < p, smooth vector fields on R* with
00(€) #0, VEE R, £:(0) =0, 0< i <p.

In [1] the necessary and sufficient conditions are given
to transform (1) globally into the following parametric-
strict-feedback normal form, for v =0,
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where p is the relative degree of (1), i.e. p is the integer for
which the following conditions are satisfied for all £ € R"

: Ly Ly,h = 0, 3)
- Lo, Li7'h # 0 (4)

and the z"-subsystem is the (n — p}-dimensional nonlin-
ear part of (1) that cannot be transformed into a chain
of integrators. Assuming that the z"-subsystem has the
bounded-input bounded-state property with respect to y
as its input, the problem of tracking a bounded refer-
ence signal y, (), with its first p derivatives known and
bounded, was solved by an overparameterized adaptive
backstepping algorithm.

We develop here a recursive procedure, similar to that
in [3], to design non-overparameterized adaptive sliding
mode output tracking control and provide robustness
even in the presence of disturbance inputs.

A drawback of the control design procedure in (3]
is associated with the use of the design parameters
¢; at intermediate steps of the algorithm because the
design parameter-dependent coordinate transformation
yields, in the original coordinates, products of the
¢;’s at subsequent steps. This generates high gains
for the parameter adaptation and can cause large
variations of the estimated parameters. In contrast to
this approach, the algorithm proposed here has a design
parameter-independent  coordinate  transformation
and employs the design parameters only at the final
step of the algorithm. Thus, the resulting adaptive
control system exhibits better transient performance
and convergence properties as well as a more robust
behaviour.

For simplicity, we present here the control design al-
gorithm to achieve asymptotic output tracking for the
system (1) in input-output linearizable form, i.e. the re-
lative degree p is equal to the system order n, and (2)
takes the form

0<i<p-—-2

& = zip+0Tyi(z1,...,2) 1<i<n—1
En = yol&) + 0T va(2) + (Bolz) + v)u (5)
y = n

where the 4; and Sy are smooth nonlinear functions of
their arguments, with fo(z) # 0, Vz € ®".

2.1 Backstepping algorithm
STEP 1. The tracking error function z; is defined as
7= y(t) = 4 () = 21(8) — 4 (2) (6)

where y,(t) is a known and bounded reference signal with

n bounded and known derivatives yﬁ‘-) ,i=1,...,n. The
time derivative of z; is

O]

Bi=t =g =22+ — i

Defining 6 as the estimated values of 8, we can rewrite #;

as

21 =23+ 0T7l - gr + 0T71 (8)
with § := 6 — & as the estimation error. Consider the
Lyapunov function

- 1. ~
Vi(o, 6) = -;—zf + 587014 9)
with T' =T7 > 0, and its corresponding time derivative

Vi =zfza+ 0Ty — ]+ 67T (=6 + Tz171)  (10)

We can eliminate § from V; using the tuning function

é =7N= I’zl'yl = Flel (11)

and, if z; were the control, we would achieve Vl = —2}
with the virtual control z; = a; defined as

o=~y 44—z (12)

Since z, is not the control and, therefore cannot be chosen

arbitrarily, we define the second error variable
22=$2‘a1=32+é’r71—yr+21 (13)

as the deviation of the state variable z; from its desired
trajectory. Thus, the closed-loop form of z; is

2= =21+ 29+ éTwl (14)
and the time derivative of V) is
Vl =—212+21Z2+§TF_1(—é+T1) (15)

STEP k (2 < k < n—1). The time derivative of the
error variable z; is

k-1
Z =-’CI¢+1_Z

f=1

oy - Bag-1:

8::.- 12.'+1+9ka—#9—1/£*) (16)
with

5l o

5z ¥ (17)

Wk =Tk —
=1

We rewrite 2 as

) k-1 ey
2k = ’3k+1“2 bz

$=1

- Bog_1 .,
! 1‘,’+1+éka— akﬂ L B—y'(_k-) +0ka
i 88

(18)
which can stabilized with respect to the augmented Lya-
punov function

1
Vi = Vi1 + 522 (19)

The time derivative of Vj is

k2l Bag
Ve =2 [zk-l + ZTpqr — Z 6::71
£

=1

2ot + 0wy
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=1 $=1

+ 6~’TI“1(—§ + 7k—1 + Tzrwy) (20)
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We can eliminate § from Vj using the tuning function with

) k
=1 =7 1+ Tzpwy = Fzzs'w.' (21)

i=1

and noting that

é_"'k—l=é“7'k+7'k—‘n,_1=é—7}+r2kwk (22) ol
W€ rewrite Vk as
. k-1 k-2 P .
Vi = _Zz,?+ (Ez;+1—%+0TF‘1)(—0+Tk)
i=1 i=1 a0 P
- - 113
k=1
oy Ok ;
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Now, if 2x41 were the control we would achieve

 dan-
Wn = Yn — Z 61’. 171' (29)

We have transformed (5) into

-, Oop_q  »
—2k_y — 2k + zpg1 + 0wk — —#(0 - Tk)
k-2 Soue
+ Y zig —Tuwy, 1<k<n-1
‘.gl: 41 30 k. >
= da p 0yt i
Yo + Bou — Z a"'_l zigy + 6w, — not
i=1 Zi
—y 467w, (30)

n-1

Tnel = Tn—2+ 2n_1wp_1 =T Z ZiWs (31)

i=1

We consider now the following sliding surface, expressed
in terms of the error variables z;

Ve = —32F_, 22 with the virtual control zx41 = o
defined as c=ciz1+c22+ ...+ Cno1Zn-1+ 2, =0 (32)
k=1
o = —2g_1- Z 3;1:—1%“ + 9tk T where the scalar coefficients ¢; > 0,i=1,...,n— 1, are
=1 Y% o6 chosen in such a manner that the polynomial

= Oa;
_(07' - 2254-1 a—é'l")wk +y*) -z, (24)

p(sy=ci+ecas+...+ Cn18" "2 4 ™! (33)

S . : in the complex variable s, is Hurwitz. We impose a dis-
Ince Z1 15 not the control and, therefore X0 be  continuous control law on the dynamics of (30) in order to
chosen arbitrarily, we define the (k 4 1)-th error variable generate a stable sliding regime on the prescribed surface

Zp41 = Tp41 — Ak (32).
At the final step we extend the Lyapunov function as
_ < Batg—y Bag_y foll
Zktl = Thy1t 2Zk-1 — E Bz Tig1 — % Th ollows
1

+(éT = ; Zi+l%r)wk -y 4z (25)

as the deviation of the state variable z, 4, from its desired
trajectory. Thus, the closed-loop form of z is

. ~ Oag_1,;
B = —zk_1— zk+ zkgr + 0T wi ~ %(9 - k)
k=2 g .
+ Zz.-+1—3l‘wk (26)
=1 06

and the time derivative of Vj is calculated as

E 2+ 2k 2k g+ (E Zit1 a—+0T )(—é+‘rk)

=1

(27)
STEP n. By using the definition for z, 1= , — ®n-1,
and adding and subtracting the estimated values 8, we

obtain the time derivative of the error variable 2, as

ek 6a 1 =

Zn = Yo+ Pou-— ; 6;,_ Tip1 + 0T w, —
—y + 07w, (28)

60’"—1 5

6
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1 1
Vo = Ve 143 o? 5;

02 + 9Tr-19 (34)

and using (27), for k = n — 1, the time derivative of V,, is

Zz + Zn_12n — Zz.+1——— — Ta-1)

i=1
- n-1
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To eliminate § from V,, we choose the update law

n-1
é = Ty =Tp-1+ l"a'(wn + E ciwi)

i=1

n-1 n-1
= D(meitolwon+t Y aw)) ()

=1 i=1

anc'l; noting that

n-1

§~Taey = Tn = Tac1 = To(wn +20‘w‘) (37)

i=1

we rewrite V, as

n-1
2
- E zi + Zn-12n +

i=1
n-1 S .
0[‘70 +fhou— 32__118-41 + 67w, — ™
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n-1 i-2
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_g ( oy 1 n—ﬁ)—;"j‘rlﬁrw")
-Zw P(un + Z qw)]  (39)
i=1

and finally choose the control law

[ %+Z:
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+ E (301. 1
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z, L= Tw, + i
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—x(o+ ngn(zr))] (39)
to obtain
n-1
=- E 22 + 2p-12n — K02 — kW o] (40)
i=1
To prove the asymptotic stability consider
V, = —2TQz — kW|o| (41)
with
1+ kel KC1Cn—1 Key
KC1C2 KCaCp -1 KCo
Q= : : g
KC1Cn—1 14+xc2_y ~}+Kena
Kc1 -3+ Ken_1 K

The principal minors of @ have the value

d
1+n§:c?>0 ;

=1

1<d<n-1 (42)

Thus, a sufficient condition on the design parameters to
achieve asymptotic tracking can be obtained from

dM@:—%MO+%4 %i:)>o (43)

So V,, < —zTQz < 0 and therefore, since

Jim (1) = 9(0) —w (6) =0 , (44)
asymptotic tracking is achieved. The convergence of the
state trajectories towards the sliding surface can be es-
tablished from the LaSalle invariance theorem.

Note that the algorithm proposed here also achieves
global asymptotic tracking for the class of uncertain
nonlinear systems transformable into (5). Moreover,
it can be extended to a broader class of nonlinear
systems that cannot be transformed into either
parametric-pure or parametric-strict feedback form by
parameter-independent state coordinate transformation
[9]. A similar approach was used in [9] for PWM
regulation of DC-to-DC power converters by a suitable
combination of dynamical input-output linearization
and a systematic backstepping-like procedure, whereas
the asymptotic output tracking problem, without
parametric uncertainties, has been solved in [7] by
dynamical SMC strategies.

3 Dynamical adaptive sliding mode
tracking control of the Buck-Boost
converter

Consider the average Buck-Boost converter model defined
on the input inductor current z; and the output capacitor
voltage 23

£ = 61(1—p)za+ (fs+v)p
1)‘2 = —-02(1 - [l,):cl ot 03132 (45)
y = n
with
1 1 1 E
== ; b= ; Ga=2= ; fa=— (46)

L

where L, C and R are respectively the inductance, capa-
citance and resistance values of the circuit components,
while E is the constant external voltage source. These
four circuit components define the set of unknown para-
meters § € ®*. The control input function p takes values
in the interval [0, 1] and the regulated output function is
the input inductor current 1, which must follow a desired
output reference signal y,(t). v is an external stochastic
bounded perturbation input.
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For 4 = U constant, with 0 < U < 1, the equilibrium
values model are readily obtained from (45), for v = 0,
as
. 630,U 6. U

X1 (U) 304 4

= 50,(1-U)? Th-U)

Our primary objective is to design a dynamical adaptive
sliding mode control for tracking a known reference signal
% (t). In particular, we are interested in driving the input
inductor current z, to follow a smooth trajectory between
two operating equilibrium points X, X}

y(t)_{X1 0<t<t
T X+ (X - X)exp(—k(t —11)%) t>1
(48)

Note that (45) is not transformable into the parametric-
pure or parametric-strict feedback forms by parameter-
independent state coordinate transformations, therefore
adaptive backstepping design, under conditions given in
(3], is not applicable.

In order to implement the algorithm presented in the
previous section, we rewrite (45) as

Xa(U) = (47)

£ = 0T71($1,22,#)
2y = 0T72(x1,x2,p) (49)
y = o
with
9 = [0 82 65 647 (50)
n o= [(1-pzz 0 0 47 (51)
v o= [0 —(1-pz -z 0 (52)
)

First we define the tracking error function z; as in (6
and obtain the following: '

Z9 = éT'fl - 1./1' + 2t (53)
B ==z + 25+ 6wy (54)
Vl = —zf +2122+§TF_1(—é+T1) (55)

At the second step, we define the sliding surface
o =c1z1+ 22 and the augmented Lyapunov function
Vo = Vi + 302, The time derivative of V; is

Vo = —zf+z1zz+§f"1(—é+‘r1+l"tr(wg+clw1))

+ U[éTwz + é‘h + (é4 - 911‘2)/1

-~ — i + 61(—?1 + 22)] (56)

To eliminate § from V3 we choose the update law

b=rp=m + To(ws + ciwy) = I‘[zlwl +o(ws + clwl)]
(57)

The control function u can be readily obtained in an im-

plicit manner, as the solution of the following nonlinear
time-varying differential equation

- 1
#= (94 - élzz)
—c¢1(—z1 + 22) — k(0 + Wsgn(o)) ](58)

[—' éT‘-‘)2 - T;T“fl + yr +yr

and
Vo= =22 + 2129 — k0? — kW]o|

(59)

From (43), the sufficient condition on the design para-
meters to guarantee asymptotic tracking is
1
k(l4+ec1) > 1 (60)
An important advantage arises from the dynamical ad-
aptive variable structure controller represented by (58):
the output tracking error function zy(t) asymptotically
approaches zero with substantially reduced chattering.
Simulations were carried out to assess the adaptively
controlled tracking behaviour of the average Buck-Boost
converter model. The following nominal values of
the circuit parameters were used: C =181.82 uF,
L=027mH, R=244Q, E =14.667 Volts.  These
values of yield the model parameters 6; = 3.6 x 103,
8, =5.5x 103, 63 =2.25 x 103, 65 =52.8x 103. The
design parameters were ¢y =3, k=15, W =10, I = I4.
Figure 1 depicts the dynamic adaptively regulated
tracking of the inductor current z; for a smooth
transition between X; = 22.5 amps and X} = 10 amps,
corresponding to U = 0.6 and U = 0.4695 respectively,
as well as the time evolution of the controlled capacitor
voltage 3. The regulated output variable z1(t) is seen
to exhibit asymptotic tracking to the desired reference
input y.(t). The figure also shows the control input
function and the time evolution of the adaptive sliding
surface. Figure 2 shows the estimated parameter values
6 obtained from the updating law, and an example of
the perturbation noise input. ;

4 Conclusions

An adaptive sliding mode control design approach, based
on the adaptive backstepping procedure and the VSC
scheme, has been developed for the effective output track-
ing control of linearly parameterized uncertain nonlin-
ear systems. The algorithm sets up a design parameter-
independent state coordinate transformation and yields
adaptive sliding surfaces on which stable sliding regimes
can be generated. A sufficient condition on the design
parameters to guarantee asymptotic tracking has been
analyzed. A dynamical extension of the control design
algorithm can be applied to uncertain nonlinear systems
that are not transformable into the parametric-pure or
parametric-strict feedback forms. The proposed control
strategy has been applied to the output tracking control
of the average Buck-Boost converter model and it has
been shown to be remarkably robust with respect to ex-
ternal stochastic bounded perturbation input signals.
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Figure 1: Dynamic adaptively regulated tracking and ca-
pacitor voltage evolution of the Buck-Boost converter,
control input function and adaptive evolution of the slid-
ing surface.
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Figure 2:" Parameter estimates and perturbation noise
signal.
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