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ABSTRACT

It is shown that Chua’s circuit is a differencially flat
system. This feature makes the linearizing feedback
controller design a task particularly simple. This note
presents a smooth nonlinear controller and a dynam-
ical discontinuous strategy which stabilize the system
around an admissible trajectory ya(t). Computer sim-
ulations are prescnted to illustrate the performance of
the proposed controllers.
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L. INTRODUCTION

‘Controlling chaos’ is actually an active area of research
in which the physics, mathematics and the engineer-
ing communities have been very interested in the last
few years ([1], [2], <f {3], [4] and references therein).
The control strategies used so far have becn restricted
to tools obtained from dynamical system theory (Ott-
Grebori-Yorke approach, resonant methods, entrain-
ment and migration control, etc) mostly developed by
physicists and mathematicians with a clear tendency
to use non-feedback control techniques. Only recently
an engineering control approach, represented by linear
feedback strategies, Chen and Dong [5], and frequency
response methods, Genesio et al [6], has received con-
siderably attention to solve this problem.

One of the most popular nonlinear electronic circuits
used to explain and experiment with chaotic dynam-
ics is Chua’s circutt [7], [8], [9], [10]. In this note, it
is shown that a controlled version of this citcuit is in-
cluded in the broad class of differentially flat systems.
Differentially flat systems were introduced by Fliess et
al in [11] using differential algebraic tools. The flatness
property possibly represents the best nonlinear exten-
sion of Kalman’s controllability. A large class of dy-
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namical control systems is indecd differentially flat: lin-
ear controliable systems, systems linearizable by state
coordinates transformations and static state feedback
are flat. Mechanical systems with nonholononiic ve-
locity constraints are also flat, etc (cf {12, [13]). Flat
systems are equivalent to nonlinear control systems lin-
earizable by a dynamical endogenous feedback. This
feature makes the linearizing fecdback controller design
a task patticulatly simple (cf [14], [12]).

Based on the flatness property of Chua's Circuit, we
present the design of a smooth nonlinear feedback con-
troller (cf {15}, [16]), and a dynamical discontinuous
nonlinear fecdback strategy (cf [17], [13]). Given one
of these control policies, the chaotic response of Chua’s
circuit can be stabilized around a desired adniissible pe-
riodie orbit y4(1), or, alternatively, towards a constant
equilibrium point.

This note is organized as follows. In Section I we
prove that Chua's circuit is a differentially fla1 system
Section I presents the design of a smooth nonlinear
feedback controller and a dynamical discontinuous non-
linear fecdback strategy. Section IV is devoted to con-
clusions and suggestions for further rescarch.

IL. DIFFERENTIAL FLATNESS OF CHUA'S
CIRCUIT ’

Consider the following single input nonlinear control
system

&= f(z) +g(z)u (1)

where £ € R™ are the states variables and u € R is the
control input.

Definition 1 [12] A system (1) is a differentially flat
system if there exist one differentially indcpendcn! out-
pul y such that

1. z and u ere differential funclions of y, i.c., func-
tions of y and a finile number of its time deriva-
Lives.



2. y is differential function of x.
The output y is called lincarizing or flat oulput.
Dv
Chua’s Circuil model

The following state equations model Chua’s circuit
(called Chua’s circuit if Ro = 0 and Chua’s oscillator if
Ro #0):

d 1

7”; - a—[G(vz—vl)-—f(vl)]

d 1 .

—d”f- = E[G(vl—vz)+13]

di 1 .

71;—3 = —f(vz + Roi3) )

where vy, vs, i3 are the state variables as shown in Fig-
ure 1, G = 1/R. f(v)) represents the v-i characteristic
of the nonlinear resistor Ng, which is called Chua’s
diode. .
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Figure 1: Chua's circuit

The function f(vy) is generally taken to be a piece-
wise linear function (sce Figure 2). For our purpose,
f(v1) will be approximated by a smooth locally invert-
ible nonlinear function like f(z) = coz + ¢1 23, or a ‘sig-
moid’ f(z) = az + b(exp(cz) — 1)/(exp(ez) + 1).

In the scquel, Chua’s circuit is modified to include
a control variable represented by the current i. added
to node 1 of this circuit. This transforms the state
equations (2) into

d: 1

T = glGm—w) ~fw)

d 1

__:Tz = 'C';[G(vl ~ vg) + i3 + 1.}

di 1 ,

7}3- = —-'L-(Uz + Rol3) (3)

or in dimensionless form

d:clr

—J; o a(zg bl 4 R f(zi))

slope o iR=f'(vR)
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Figure 2: Chua’s diode: Typical v-7 characteristic

dxz
dr
dl‘g
ra

-2+ 23t u

= —fz; - 723 (4)

where 2y = vy, 23 = vz, £3 = i3/G are the state vari-
ables, a == Co/C}, B = C3/LG?, v == CoR,/ LG are the
essential parameters, T = G/Cyt is the time scaling,
u = i./G is the control input, and f(:) = f(-)/G is the
new locally invertible nonlinear function.

Flatness

It is easy to show that (4) is linearizable by state
coordinates transformation and static state feedback
therefore it is differentially flat. Using the methods
found in {15], [16] one immediately obtains the lineariz-
ing output y:

yi= /ot zs/p
The time derivative of the flat output is given hy
—zy —f(z1) - yz3/B

It is necessary to solve the following equation in terms
of z,:

y =

i+ = -~ [(e2) + Fa

Setting F(z1) = —zy — f(z1) 4+ y21/8, where F is
locally invertible by the assumptions on f(z;), results

o= FHY(n) +vy(n)

After some algebraic manipulations, state and input
variables can be expressed as differential functions of
the linearizing output y.

III. CONTROLLER DESIGN

Continuous nonlinear fecedback controller



It is possible to achieve an input—output inearization
of system (4). Let the system output be y = z;, the
control law

v = al-z1+z2— f(z)))— 21+ z2~23+ ...

a
Yoo 4m-f@n+2 6
gives the followmg linear input—output system
j=v
It should be clear that the full state (23, 22, z3)
must be available to implement this nonlinear feedback
control law.
Taking the control objective to be the tracking of
a prescribed reference trajectory y4(t) = 2¢(¢) by the

output y(t), we may use the following state-space trans-
formation

al) = «i(t) - 25(t) = y(t) — yalt)
@Gat) = &) - i)
= afza(t) ~ z1(t) ~ f(n(t))) - (1)
7ty = ax3(t)
Setting v according to
v = 85 4 ka(2f — 1) + k(2 — 24) (6)

results in the following dynamics for the tracking error
@1+ kagy 4 kg1 =0

where k4, k, > 0 so that 87 4 kg5 + &, is Hurwits.
The complete linearized control system is given by

i = @

G2 = —kpq1 —kaga (7
Lt 2a)) - ..

= Blas +24(t)) ~ Bf(q1 + za(t)) — 72

£ =

= ¥(g;2) ®)
Yy = @ )]
with ¢ = [q1,¢3)T.

The zero dynamics
§ = 9(0,2) = ~La4t) - Bratt) - p1(2a) 12

is globally exponentially stable for (24,44) = (0,0), or
z is bounded if z4 and 24 both are bounded. By defi-
nition, this system is globally minimum phase since its
zero dynamics is globally asymptotically stable. Figure
3 shows the close loop state trajectories and the con-
trol input. As it can be seen from the numerical sim-
ulation, the proposed controller achieved the desired
stabilization of the output voltage around the desired
equilibrium value.

Capacitor voltnges v, S t
. ' '

, -

A g UL C
[ ] .5 1 1.8 2 28 3 33

Yoea) wrat
CumentBendic ve. tne ¢

[0 X
Hoeg) 210

Figure 3: Controlled behavior of vy, v and i3 using a
continuous control

Dynamical discontinuous nonlinear feedback controller
Set q1 = #1, g2 = £1, and ¢3 = ;. The system (4)

has the following Fliess’ Generalized Controller Canon-
ical Form

i = q
g2 = gq3
- 7]
i3 = —ofq ~abf(q)—arf(n)-o J;,ql])’h‘
8
- oy f(ql)g-—7<12-ﬂq2“a7q2""
. a?
- gq(ql)qz-—aqa-—qa'-‘r‘la'Fa‘Y““‘O’“ (10)

The dynamical sliding mode controller comes from im-
posing the discontinuous dynamics

= —Wsign(o) (1)
where o is the tnput dependent sliding surface

o=ci1q1+caq2+q3

The scalar coeflicients ¢; (i = 1,2) are chosen in such a
way that ¢; + ¢25 -+ 5% is Hurwitz (cf [17]).
It is well known that t.rajectones of & converge to a
sliding regime on ¢ = 0 in finite time T'= W~11¢(0)).
The expression for the dynamical implicit sliding
mode controller is given by
u =

c c
“é‘h"‘f%i—ﬁm+ﬂf(411)+7f(<h)—‘ru+...

1
f(ql)qz + 93+ pu PG

+ %q; + -ﬁ-qa +vq2 -+

¥, Of (m)

[4 4

@+ =5 +781;(qu) - —‘z—/sign(o’) (12)



We have imiplemented and tested both sirategies,
static and dynaraical staie ferdback, using a 480 PC for
data acquizition and control. The whole sysiein was re-
alized programmniing in assenibler code. Vhe hardware
impietieniation 18 based on n recent work of Tiayes ¢f
al {19].

From the computational point of view, the proposed
control laws can locally stabilize the circuit response
towards a constang cquilibrium point. For tracking, the
close locp systeit don't have the desired hehavior due
o the electnical noise of circuits clenients.

IV. CONCLUSIONS

Tt was presented in this note that a controlled Chua’s
circult is included in the broad class of differentially flat
systcms. This feature makes the linearizing feedback
controller design a task particularly simple. In a rough
sense, flatness implies controllability.

The proposed nonlinear control laws have the prop-
erty of state asymptotic stabilization around a desired
admissible trajectory or equilibrium point, this was ii-
lustrated through a nurerical simulation.

It is possible to exploit differential flatness for adap-
tive control purpose using a novel technique called con-
trol of the clock {18]. This topic will be the subject of
a forthcomming publication.
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