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Abstract

A Lagrangian approach is used for the modeling of
switch-regulated DC–to-DC Power Converters. A set
of switched Euler–Lagrange (EL) parameters, is pro-
posed which recovers the individual EL formulations
of the intervening circuit topologies for each particu-
lar switch position. Switched models of the “Boost”,
the “Buck~Boost”, and the “Cuk” converters circuits
are systematically derived
realism.

from the lagrangian for-

1 Introduction

Modeling of switched regulated de-to-de power con-
verters was in~tiated by the pioneering work of Mid-
dlebrook and Cuk [1] and Cuk [2] in the mid seventies.
The area hss undergone a wealth of practical and the-
oretical development as evidenced by the growing list
of research monographs, and textbooks, devoted to
the subject (see, for instance, Kassakian et al [3] ).

In this article, a Lagrangian dynamics approach is
used for deriving a physically motivated model of the
DC–to-DC power converters. The approach consists
in establishing the Euler–Lagrange (EL) parameters
of the circuits associated with each one of the topolo-
gies corresponding to the two possible positions of the
regulating switch. This consideration immediately
leads one to reaJize that some EL parameters remain
invariant under the switching action while some oth-
ers are definitely modified by either the addition, or
annihilation, of certain quantities. A switched model
of the non-invariant parts of the EL parameters can
then be proposed by their suitable inclusion through
the switch position parameter. This inclusion is car-
ried out in a consistent fashion so that, under a par-
ticular switch position parameter value, the original
EL parameters, corresponding to the two intervening
circuit topologies, are exactly recovered.
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The switched EL parameter considerations immedi-
ately lead, through the use of the classical Lagrangian
dynamics equations, to traditional systems of differ-

ential equations with discontinuous right hand sides,
describing the actual behavior of the treated convert-
ers. The obtained switch-regulated models entirely
coincide with the state models of DC–to–DC Power

Converters introduced in [1] and [2].

2 Modeling of Switched Euler-
Lagrange Systems

The Euler–Lagrange formulation of dynamical sys-
tems constitutes a thoroughly studied and developed
chapter of Classical Mechanics. For the particular
case of electrical and electromechanical systems, the
reader is refered to the book by Meisel [4].

An Euler–Lagrange system is classically character-
ized by the following set of nonlinear differential equa-
tions, known as Lagrange equations,

()

d 8.C c9L—— –x +3q
mm f3q= aq

(2.1)

where q is the vector of generalized positions, assumed
to have n components, represented by ql, . . . , qn, and
q is the vector of generalized velocities. The scalar
function L is the Lagrangiara of the system, defined
as the difference between the kinetic energy of the
system, denoted by 7(9, q), and the potential energy
of the system, denoted by V(q), i.e,

L((j, q) = 7-(g, q) – v(q) (2,2)

The function D(g) is the Rayleigh dissipation cofunc-
tion of the system. The vector ~r = (791, . . . . ~g. )
represents the ordered components of the set of gen-
eralized forcing functions associated with each gener-
alized coordinate.

Euler–Lagrange systems are, thus, generally repre-
sented by the set of equations

()d &T

z%
.g+E=–~+3q

aq aq
(2.3)
We refer to the set of functions (’T, V, ‘D,f) as the
Euler-Lagrange parameters of the system and simply
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express a system 2 by the ordered cuadruple

x = (7, V, D, Y-) (2.4)

Note that equation (2.3) can be simply rewritten
in terms of the non-conservative Lagrangian function
CFD (see White and Woodson [5]) as follows

d 8LFD dLFD ~

‘—– dq =dt dq
(2.5)

where LFD is given by

/

t
LFD=T+ Ddt – V + qT3g (2.6)

o

2.1 Switch Regulated Euler–Lagrange

Systems

We are particularly interested in dynamical systems
containing a single switch, regarded as the only con-
trol function of the system. The switch position, de-
noted by the scalar u, is assumed to take values on
a discrete set of the form {O,1}. We assume that for
each one of the switch position values, the resulting
system is an Euler-Lagrange system (EL system for
short) characterized by its corresponding EL parame-
ters. In other words, we assume that when the switch
position parameter takes the value, say, u = 1, the
system, denoted by xl, is characterized by a known
set of EL parameters,

xl = (T1, V1, D1, Y1) (2.7)

The system 21 is thus characterized by its noncon-

servative Lagrangian fUIICtiOII~&F. Application of
the traditional EL equations to ~~~ is said to gener-
ate a dynamical model Ml of the system Xl

Similarly, when the switch position parameter takes
the value u = O, we assume that the resulting system,
denoted by Z. is characterized by

Xcl= (70, VO,DO, FO) (2.8)

with associated nonconservative Lagrangian function

denoted by C~F and dynamic model Mo.

Definition 2.1 A function q$ti(g,q) = 4(4, q, ~),
parametrized by a, is said to be consistent with the
functions q!Jo(g,q) and ~l(g, q) whenever

4.1.=0 = #o ; dulti=l = 41 (2.9)

Definition 2.2 We define a nonconservative
switched Lagrangian function L~F, associated with
the Lagrangian functions C~F and Z~F, as a func-
tion, parametw”zed by the switch position u, which is
consistent with L~F and L~F for the corresponding
values of the switch position parameter, u E {O, 1}.
In correspondence with the non-conservative
switched Lagrangian fUnctiOn ~~F we may also
introduce the set of switched EL parameters
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(Tu, Vu, ‘DU,F.) as a set of functions parametrized
by u which are consistent, in the sense described
above, with respect to the EL parameters of the sys-
tems 20 and El for each corresponding value of u.
Similarly, the definition can also be extended, in an
obvious manner, to engloble the dynamical switched
model M. of the switched system ZU to be a model,
parametrized by u, which is consistent with M. and
M 1 for each corresponding value of u.

A switched system arsing from the EL systems 20
and 81 is a switched EL system whenever it is com-
pletely characterized by its set of switched EL param-
eters

X“=(7”, V.,D.,7”) (2.10)

The basic problem in an EL approach to the mod-
eling of switched systems, arising from individual
EL systems, is the following: Given two EL sys-
tems 20 and 21 characterized by EL parameters,
(To, Vo, ‘DO,Fo) and (~, Vl, VI, Fl), respectively, de-
termine a consistent parametrization of the EL pa-
rameters, (Tu, Vu, VU, 3U) in terms of the switch po-
sition u, with corresponding nonconservative switched
Lagrangian ~jjF, such that the model obtained by di-
rect application of the EL equations (2.5) on ~~F,
results in a parametrized model MU, which is consis-
tent with M. and Ml.

3 A Lagrangian Viewpoint in
the Modeling of DC–to-
DC Converters with Ideal
Switches

3.1 The “Boost” converter circuit

Consider the switch-regulated “Boost” converter cir-
cuit of Figure 1. The differential equations describing
the circuit were derived in [1] using the classic Kir-
choff laws. Such set of equations are given by

where xl and X2 represent, respectively, the input in-
ductor current and the output capacitor voltage vari-
ables. The positive quantity E represents the con-
stant voltage value of the external voltage source.
The parameter u denotes the switch position. The
switch position parameter takes values in the discrete
set {O,1}.

Consider u = 1. In this case two separate, or de-
coupled, circuits are clearly obtained and the corre-
sponding Lagrange dynamics formulation can be car-
ried out as follows.
Define T1(~L ) and V1(qC) as the kinetic and poten-
tial energies of the circuit respectively. We denote



by Dl(gc) the Rayleigh dissipation cofunction of the
circuit. These quantities are readily found to be

z(iL) = *W2

V1(9C) = +9:

Dl(gc) = ;R(9C)2
F;L = E ; F&=O (3.2)

where F~~ and F~C are the generalized forcing func-
tions associated with the coordinates qL and qc, re-
spect ively,

Evidently, the Lagrange equations (2.1), or (2.3),
used on these EL parameters immediately rederive
equation (3.1), with u = 1, as it can be esasily veri-
fied.

Consider now the case u = O. The corresponding
Lagrange dynamics formulation is carried out in the
next paragraphs.

Define To(4L) and V. (qc) as the kinetic and poten-
tial energies of the circuit, respectively. We denote by
Do(4L, iC ) the Rayleigh dissipation function of the
circuit. These quantities are readily found to be,

70(jL) = ~L (9L)2

VO(9C) = &q:

Do(9L,9C) = ;R(9L – gc)z

F;. = E ; F:C=O

where, F:, and @C are the generalized forcing

(3.3)

func-
tions ass;;iated w;th the coordinates qL and qc, re-
spect ively.

Evidently, the Lagrange equations associated with
these definitions immediately rederive equation (3.1),
with u = O, as it can be esasily verified.

The EL parameters of the two situations generated
by the different switch position values result in iden-
tical kinetic and potential energies. The switching
action merely changes the Rayleigh dissipation co-
function between the values ‘Do(4c) and VI (4L, 4c).

Therefore, the dissipation structure of the system is
the only one affected by the switch position. One
may then regard the switching action as a “damping
injection”, performed through the inductor current.

7u(!iL) = ~L(tiL)2

V.(qc) = *9:

D.(gL, gc) = +[(1 – ~)~L– 4C]2
F;L = E ; F:C=O (3.4)
Note that in the cases where u takes the values
u = 1 and u = O, one recovers, respectively, the dis-

sipation cofunctions DI (it) in (3.2) and Do(4L, 9C )
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in (3.3) from the proposed dissipation cofunction,
DU(9L, gc), of equation (3.4). The proposed EL pa-
rameters are therefore consistent.

The switched Iagrangian function associated with
the above defined EL parameters is given by

One then proceeds, using the Lagrange equa-
tions (2. 1), to formally obtain the switch-position
parametrized differential equations defining the
switch regulated system which corresponds to the
proposed switched EL parameters (3.4). Such equa-
tions are given by

(–)d dLu d,Cu 8D.—— =
z aqc aqc

–= + Yqc (3.6)

Use of (3.6) on (3.5),(3.4) result in the following set
of differential equations

LgL = -(1 - u)~[(l – ?.6)~L- g~] +E

qc
c = ~[(1– U)9L– gc] (3.7)

which can be rewritten, after substitution of the sec-
ond equation into the first, as

qL = -(1- u)fi+:

1
9C = ‘~qC + (1 ‘u)tiL (3.8)

Using xl = 4L and X2 = qC/C one obtains

xl = –(1 –u) *Z2 + $

X2 = (1 -u) :% – +32 (3.9)

The proposed switched dynamics (3.9) coincides
with the classical state model developed in [1] and
[2].

3.2 The “Buck-Boost” converter cir-

cuit

We summarize all the relevant formulae, and equa-
tions, leading to the switched model of the “Buck-
Boost” converter circuit, through and EL formula-
tion, in Table 1, at the end of the article. The circuit
of the “Buck-Boost” converter is shown in Figure 2

Remark 3.1 The lagrangian approach to naodel-
ing of the “Buck-Boost” converter reveals that only

the “dissipation strucutre” and the ‘external forc-
ing functions” are non-invariant with respect to the
switching action.

1



Figure 3: The “Cuk” converter circuit.
3.3 The “Cuk” converter circuit

We summarize all the relevant formulae qnd equa-
tions leading to the switched model of the “Cuk” con-
verter circuit through our proposed EL formulation in
Table 2, at the end of the article. The Cuk converter
model is shown in Figure 3.

As inferred from T~ble 2, the lagrangian approach
to modeling of the “Cuk” converter reveals that only
the “potential energy” structure of the system is non-
invariant with respect to the switching action.

4 Conclusions

In this article we have shown that well-known mod-
els of DC–to–DC Power Converters constitute a spe-

cial class of Euler–Lagrange systems with switch-
dependent Euler-Lagrange parameters. Ideal switch-
ing devices were first considered and the correspond-
ing switched models of the traditional converters
structures were derived by appropriately combining

the Euler Lagrange parameters associated with the

intervening circuit topologies. The lagrangian for-
malism may also be extended to handle multivariable
versions of switched-regulated power converters and

realistic models of traditional switch–regulated power

supplies including parasitic resistances and parasitic
voltage sources. The nature of the lagrangian for-

mulation is highly appealing and consistent with re-
cent trends in Automatic Control theory whereby a
passivity based approach is emerging as an advan-
tageous physically motivated controller design tech-
nique which exploits the energy structure of Euler-
Lagrange systems (see Ortega et al [6] and the refer-
ences therein). This article, thus, must be regarded
as an initial step towards the formalization and devel-
opment of a systematic nonlinear feedback controller
design methodology, based on the passivity approach,
for a variety of switched regulated models of DC-to-
DC Power Converters.
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FIGURES

Figure 1: The “Boost” Converter Circuit.
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Figure 2: The “Buck-Boost” converter circuit.



BUCK–BOOST CONVERTER

Euler–Lagrange Parameters for Possible Switch Positions

‘u U=(3 U=l

Switched Euler – Lagrange Parameters

Kinetic Energy TU(jL) = ;L (jL)’

Potential Energy V.(qc) = &q:

Rayleigh Dissipation Dti(~~,(j~) = ;R[(l – u)9L + gc]z
Forcing Functions ~~=uE ; 3“ =()

Lagrangian for the “Buck – Boost” Converter Model

Switched model in Generalized Coordinates

L~L = –(1 – u)R[(l – U)9L + 9c] + U~

~ = –~[(l–~)gL+gC]

Definition of State Variables

Switched Model for the “Buck – Boost” Converter
Table 1 An EL approach for the Modeling of the “Buck-Boost” Converter
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&JK CONVERTER

Euler–Lagrange Parameters for Possible Switch Positions
I

u I U=o Iu=l I

Kinetic Energy 2
To(4L,,4L,) =+ L1(4L, ) +~L(iLs)

2
T1(4L,,4L,) = *L1 (~L,)2 + ;L (4L,)

2

Potential Energy vo(qL1 ,qc, ) = *Q2, + m%, vl(qL3)qc4)= ~~:.+m!lc.

Rayleigh Dissipation ~(9L3!9c4) = *~(9L3 - 9C4)’ ~l(9L3, 9C4) = +~(iL3 - k.)’

Forcing Functions –E ; 3;6 =0 ; F:c =0 3;= =E ; F;. =0 ; F;c =0qL, —

Switched Euler – Lagrange Parameters

Lagrangian for the “Cuk” Converter Model

Cu(qL,,~L,,qL,~qL.>qC, “ “) = 7ti(qL,, qL,) - ~u(qL, ~qL.,qC,)

= ~Ll (UL, )2 + ;L(ka)z – & [(1 – u)9L1 + ZUU.1 — 44.

Switched model in Generalized Coordinates
I

L1gL, = –(1 – u)* [(1 – u)q~, + ~qL,] + E
L3{L, = –~~ [(1 – u)q~l + uq~,] – R(4L, – 4C4)

&= R(!jL3-9c4)

Definition of State Variables
I

Switched Model for the “Cuk” Converter
I

A1=–(l– U)*Z2+5

X2 = (1 – u) *Z1 + U*Z3

x3 = —u&x2 — &4

ii4 = +X3 — *X4
Table 2 An EL approach for the Modeling of the “Cuk” Converter


