On Passivity-Based Sliding Mode Control of Switched DC-to-DC Power Converters *

Hebertt Sirá-Ramírez
Departamento Sistemas de Control
Universidad de Los Andes
Mérida, 5101. Venezuela
e-mail: isira@ing.ula.ve

Gerardo Escobar and Romeo Ortega
Université de Compiegne
URA C.N.R.S. S17, BP 649
60206 Compiègne, France
e-mail: rortega@hds.univ-compiegne.fr

Abstract

In this paper we propose to incorporate, into the sliding mode controller design for the regulation of dc-to-dc power converters of the “Boost” type, the energy dissipation and passivity properties of the switch-regulated system. It is announced that for the “traditional” sliding mode controller, the integral of the stored energy is infinite while for a mixed passivity-based sliding mode controller the same index becomes finite.

1 Introduction

Sliding mode control of switched-regulated circuits has proven to be a naturally successful method for the regulation of dc-to-dc power supplies. See Venkataramanan et al [1], Sirá-Ramírez and Ilic [2] and the references therein. The sliding mode feedback control approaches, so far presented, entirely overlook the physical properties of the “plant” constituted by the power converter and, specially, they ignore the possibility of modifying its energy dissipation characteristic. The main objective of this article is to extend the passivity-based controller methodology to include switch-regulated models of dc-to-dc power converters, without appealing to approximate average models. We thus propose a new mixed passivity-based sliding mode controller. We only treat, in detail, the regulator design for the “Boost” case. The results can be extended to other dc-to-dc power converters, such as the “Buck”, “Buck-boost” and the “Çuk” converter.

2 Sliding Mode Control of the “Boost” Converter

Consider the following switch-regulated “Boost” converter circuit model (see Figure 1) The differential equations describing the circuit are given by

\[
\begin{align*}
\dot{x}_1 &= -(1-u) \frac{1}{L} x_2 + \frac{E}{L} \\
\dot{x}_2 &= (1-u) \frac{1}{C} x_1 - \frac{1}{RC} x_2
\end{align*}
\] (2.1)

where \(x_1\) and \(x_2\) represent, respectively, the input inductor current and the output capacitor voltage variables. The positive quantity \(E\) represents the constant voltage value of the external voltage source. The variable \(u\) denotes the switch position function, acting as a control input. Such a control input takes values in the discrete set \{0, 1\}.

In the following proposition we denote by \(\bar{x}_1\) and \(\bar{x}_2\), the state variables of the system under ideal sliding mode conditions.

Proposition 2.1 Consider the switching line \(s = x_1 - \frac{V_d^2}{RE}\), where \(V_d > 0\) is a desired constant capacitor voltage value. The switching policy, given by

\[
u = \frac{1}{2} \left[1 - \text{sign}(s) \right] = \frac{1}{2} \left[1 - \text{sign}(x_1 - \frac{V_d^2}{RE}) \right]
\] (2.2)

locally creates a stable sliding regime on the line \(s = 0\) with ideal sliding dynamics characterized by

\[
\begin{align*}
\dot{x}_1 &= \frac{V_d^2}{RE} \quad ; \quad \dot{x}_2 = -\frac{1}{RC} \left[\bar{x}_2 - \frac{V_d^2}{\bar{x}_2} \right] \quad ; \quad u_{eq} = 1 - \frac{E}{\bar{x}_2}
\end{align*}
\] (2.3)

Moreover, the ideal sliding dynamics behaviour of the capacitor voltage variable, described by (2.9), can be explicitly computed as

\[
\bar{x}_2(t) = \sqrt{\frac{V_d^2}{\bar{x}_2^2(t_h) - V_d^2}} e^{-\frac{t}{\tau}} (1-t_h) \quad (2.4)
\]

where \(t_h\) stands for the reaching instant of the sliding line \(s = 0\) and \(\bar{x}_2(t_h)\) is the capacitor voltage at time \(t_h\).

The stored error energy of the controlled system is defined as

\[
H(t) = \frac{1}{2} \left[L \left(x_1(t) - \frac{V_d^2}{RE} \right) \right]^2 + C (x_2(t) - V_d)^2
\] (2.5)
A measure of the performance of the sliding mode controlled system, described above, is obtained by using the integral of the stored stabilization error energy. This quantity is given by

\[I_B = \int_0^\infty H(\tau) \, d\tau = \int_0^\infty \frac{1}{2} \left[L \left(x_1(\tau) - \frac{V_d}{RE} \right)^2 + C \left(x_2(\tau) - V_d \right)^2 \right] \, d\tau \]

(2.6)

We simply address such an index as the “WISSSE” index.

Proposition 2.2 The WISSSE index, computed along the sliding mode controlled trajectories of the “Boost” converter, is unbounded for all initial conditions of the converter.

3 Passivity-Based Sliding Mode Controller

Consider then the following auxiliary system

\[
\begin{align*}
L \dot{x}_{1d} + \left(1 - u \right) x_{2d} - R_1(x_1 - x_{1d}) &= E \\
C \dot{x}_{2d} - \left(1 - u \right) x_{1d} + \frac{1}{R} x_{2d} &= 0
\end{align*}
\]

(3.1)

The following proposition depicts the most important features of a passivity-based sliding current-mode regulation policy of the auxiliary system (3.1), and the plant, towards the desired constant equilibrium state \((x_{1d}(\infty), x_{2d}(\infty)) = (V_d^2/RE, V_d)\) of the “Boost” converter.

Proposition 3.1 Consider the switching line \(s = x_{1d} - V_d^2/RE\), where \(V_d > 0\) is a desired constant capacitor voltage value for \(x_{2d}\) and for the converter’s capacitor voltage \(x_2\). The switching policy, given by

\[
u = \frac{1}{2} \left[1 - \text{sign} \left(s \right) \right] = \frac{1}{2} \left[1 - \text{sign} \left(x_{1d} - V_d^2/RE \right) \right]
\]

(3.2)

locally creates a sliding regime on the line \(s = 0\). Moreover, the converter state trajectory \(z(t)\) converges towards the auxiliary state trajectory \(x_{2d}(t)\) and, in turn, \(x_{2d}(t)\) converges towards the desired equilibrium state, i.e.,

\[
(x_1, x_2) \rightarrow (x_{1d}, x_{2d}) \rightarrow \left(\frac{V_d^2}{RE}, V_d \right)
\]

Moreover, it can be easily established that the “input error” energy associated with the new controller satisfies the following property, depicted by the next proposition.

Proposition 3.3 The total energy associated with the difference between the control input \(u(t)\) and its constant average steady state value, \(u_{eq}(\infty)\), given by

\[
W_d(t) = \int_0^\infty \left[\frac{1}{2} \text{sign} \left(x_{1d}(\tau) - V_d^2/RE \right) - \left(1 - \frac{E}{V_d} \right) \right]^2 d\tau + \int_0^t \left[u_{eq}(\tau) - \left(1 - \frac{E}{V_d} \right) \right]^2 d\tau
\]

(3.3)

satisfies

\[
\lim_{t \to \infty} W_d(t) = \infty
\]

References

FIGURES

Figure 1: The “Boost” Converter Circuit.