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Abstract

A geometric approach is explored for the passivity based
regulation of continuous time processess. Although the
approach is applicable to multi-input systems only the
single input case is treated with an application example
from the biological process control area where, tradition-
ally, passivity based regulation has not been considered.

1 Introduction

Passive systems constitute a particular class of systems
for which a scalar available energy storage function can
be identified such that its rate of change, along the con-
trolled systems trajectories, is never superior to the sup-
ply rate represented by the product of the input and the
output. As a consequence of this simple definition, sev-
eral interesting properties readily-emerge. Passive sys-
tems, with positive definite storage functions, are zero
input stable in the sense of Lyapunov and also, if the
system output is rendered zero, by means of an appro-
priate feedback, the remaining dynamics or zero dynam-
ics is also Lyapunov stable. These properties make the
intrinsic behaviour of passive systems particularly at-
tractive and even desirable in connection with a possi-
ble controller design strategy. Rendering an arbitrary
nonlinear system passive will be addressed as “passivi-
zation” of the given system. It is our purpose to show

SIEEEM-96-27  Articulo recomendado v
aprobado por el Comité Técnico del IEEE
Seccion Monterrey, y presentado en el
SIEEEM96, celebrado en Monterrey, NL,
Meéxico, del 23 al 25 de Octubre de 1996.

40

that any nonlinear system can be “passivified” by
means of a suitable state-dependent input coordinate
transformation. The passivization is achievable in the
sense that the system operator relating the new input
coordinate and an auxiliary output function, is a pas-
sive operator. A more general form of passivity is that of
dissipativity from where, historically speaking, all known
results stem. General studies about dissipation proper-
ties in nonlinear systems were first provided by Willems
[1]. The extension of these results to the case of nonlin-
ear systems, which are affine in the control input, were
given in the works by Hill and Moylan [2],[3]. Passivi-
zation of nonlinear systems by means of feedback was
treated in the work of Byrnes et al [4]. Interesting de-
velopments can be found in Kokotovic and Sussman, [6],
and in the work of Lin [5]. Non trivial applications of
passivity based control, ranging from robotics to syn-
chronous motors and power electronijcs have been given
by Ortega and his coworkers (see the many references
in {7]). The reader is invited to explore a complete and
clear exposition, with many historical references, in the
recent book by A. van der Schaft [8].

In this article we propose a geometric approach for
the characterization of a passivization process induced
on nonlinear systems by means of a state dependent in-
put coordinate transformation. A geometric character-
ization of passivization implies the study of the local
behaviour of the system defining vector fields with re-
spect to a manifold of constant energy storage function.
A natural decomposition of the system vector fields may
be obtained by means of a simple state dependent input
coordinate transformation which renders lossless, with
respect to the storage function, the non-dissipative com-
ponent of the drift vector field. The transformed system
description is shown to contain four basic terms: the
growth rate of the storage function gradient in balance
with the dissipative field, the energy storage invariant
fields and the field associated with the passivity supply
rate. This decomposition is shown to have an immedi-
ate effect on the feedback regulation désign carried out



through energy storage function modification and damp-
ing injection possibilities on the associated semi-linear
state space representation of the input transformed sys-
tem. )

Section 2 presents the general theoretical considera-
tions dealing with the definitions of dissipativity, loss-
lessnes and passivity. We also present in this section the
geometric aspects of the passivization scheme by means
of a state dependent input coordinate transformation
(1.e., feedback). Section 3 is devoted to present a non-
trivial application example, drawn from the biological
process control area. Section 4 contains the conclusions
and suggestions for further research in this area.

2 A Geometric Approach to
Passivity-Based Regulation
2.1 Background Definitions
Consider the system,
g = f(z)+g(z)u
y = h(=z) (2.1)

where z € A’ C R" is the state vector, v € ¥ C R™
is the control input and the vector y € Y C R is the
output function of the system. The vector fields f(z)
and g(z) are assumed to be smooth vector fields on .
For simplicity we assume the existence of an isolated
state ¢ = z., of interest, where f(z.) = 0.

Associated with system (2.1) it is assumed to exist a
storage function, V : X' ~— R*. The storage function
is such that V(z.) = mingzexV(z) = 0. We define the
supply rate function as a function s : I/ x ¥ — R. This
function is usually taken as the standard (inner) product
s(u,y) =< u,y. >= uTy in connection with passivity
considerations.

We introduce some well-known background defini-
tions about dissipative. lossless and passive systems (see
Byrnes ef al[4] and van der Schaft [8] for further details).

Definition 2.1 (/8]) System (2.1) is said 1o be dissipa-
tive with respect 1o the supply rate s{u,y) if there exists
a slorage function V : X — R¥, such that for allzo € X
and for allty > to, and all inpul functions u, the follow-
ing relation holds

V(e(t)) - V(z(to)) < / Cs(u(t).y()dt (22)

with z(lo) = zo and x(ty) is the state resulting, af time
11, from the solulion of system (2.1) taking as initial
condilion xo and as conirol input the function u(t)

a1

Definition 2.2 ([8]) System (2.1) is passive if if is dis-
sipattve with respect o the supply rate s{u,y) = uly.
The system is strictly input passive if there crists § >
0 such thatl the system is dissipative with respect o
s(u,y) = uTy - 8{ju|]>. The sysiem is strictly output
passive if there exist an ¢ > 0 such that the system is
dissipative with respect 1o s(u,y) = vy — e]juli®.

We shall be addressing means of rendering a system
of the form (2.1) passive, or at least lossless, by means
of state feedback. We therefore introduce a definition of
“passivifiable” system in the following terms

Definition 2.3 System (2.2) is said {0 be “passivifi-
able” with respect 1o the storage funciion V' if there exisis
. a regular affine feedback law of the form

u=afz)+ By alz) € R™ ; flz) € RTT (2.3)

where B(z) is e nonsingular mairiz, and such that the
closed loop system (2.1)-(2.8) becomes passive with new
vector inpul v.

Analogous definitions apply for the strict input and
strict output passivization of systems of the form (2.1).
As we shall see, in the first case, the feedback law is
necessarily nonlinear in the new input y and, in the sec-
ond case, the affine feedback law must include an output
injection, or an output feedback, term.

Definition 2.4 Consider a smooth drift vector field
@(z). Lef LyV siand for-ihe Lie derivative of ¥V in the
direction of ¢. In local coordianies

LyV(z) = %%gb(z)

We say that the drift vector field f(x) of {2.1) has a
dissipative component fg(z), with respect to the storage
function V. whenever f(2) can be expressed as the sum
of two components

flz) = fa(2) + faal2)

such that,

1.
LiyV(z) <0 ; Yz €
and

2. Ly, V(z) does not have any summand which is less
than or equal to zero, in all of X'.



means of affine

2.2 Passivization by

feedback

2.2.1 Single input case

Consider the single input case of the affine system (2.1)
j.e.. with m = | and p = 1. For a given control input
w = u(t) and any initial state zo, the time derivative of
the storage function V', along the solutions of (2.1). is
given by

0 XU

V= %-f(z) + (%‘rg(l)) w=LV(z)+[L,V(z)]u
(2.4)
It is assumed that 17 is a function of relative degrec equals

toone,ie., L,V #0in all of X,

Suppose that the vector field f(z) has a dissipative
component fq{z) with respect to the storage function 1
The time derivative of the energy storage function is

then given by

V=L, Viz)+ Ly, V(z) + [LeV(z)]u (2.5)

Note that the previous expression may be rewritten as

Lfng,V(Q <
m + u] (2.6)

V= LiV(z)+ [LgV(z)] [
Define the following state dependent input coordinate
transformation
oo L@

LoV(z)

+u (2.7)
The time derivative of the energy storage function sat-
isfies then the following inequality

V< [LV(2)]v (2.8)
In other words. if the system has a dissipative compo-
nent, of the drift vector field f, with respect to the en-
ergy storage function V', then the system exhibits a pas-
sive behaviour between the transformed input v and the
auxiliary scalar output, [L,V(z)]. If, on the other hand.
the system drift vector field f does nof have a dissipa-
tive component, i.e., f4(r) =0V 2 € 1, then the trans-
formed system is no longer passive but lossless between
the new input v and the auxiliary output Ly V{(z).

We have, therefore, proven the following result:

Proposition 2.5 System (2.1) is passivifiable with re-
spect 1o the storage function V', by means of affine feed-
back of the form (2.3) if and only if

LiV(z)=h2)VzelX

and
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o There cxists a dissiputive componen! [qlr) of the
vector field [. wilh respect Lo the storage funclion
Vo [ = falx) 4+ faalx). such that Ly V() <
BVareld.

The affinc feedback law. or stalc dependent input coordi-
nate fransformation, that achieves passivezation is ginen
by
- L V)

L,V ()

=1

If a dissipative component, fq(2), of f(x) does not exist,
but stall L,V (z) = h(z), then the system may be rendered
lossless with respect 1o the storage function V(z), with
the same affine feedback law.

The above result can be extended to strict output pas-
sivifiable systems as follows:

Proposition 2.6 System (2.1} is strictly output passiv-
ifiable with respect 1o the storage function V. by means of
affine feedback, and output signal injection. if and only

if

*
LiV(z)=h(z)V2eld
and

o There ezists a dissipative component fq(r) of the
vector field f, with respect to the storage function
V.

The affine sinte feedback law with oulput injection (i.e..
outpul feedback) that achieves sirict output passivizalion
is given by

LiV(z) _,

L,V(z)

where ¢ is a sirictly positive constant.

u=v—-

Proof
Immediate from the definition of a strict output pas-
sive system.

o

A less interesting consequence is obtained for strict input
passivifiable systems

Proposition 2.7 System (2.1) is siricily input passiv-
ifiable with respect to the storage function V. by means
of a nonlinear state feedback if and only if

*
Ly(x)=Me)Veeld

and



o There exists a dissipative componeni fq(x) of the
veclor field f, with respect lo the slorage funciion
V.

The nonlincar state feedback law thal achicves strict in-
pul passivizalion is given by

v

_ LV e
L,V

L t0-°

where & 1s a strictly posttive constani.

2.2.2 A geometric interpretation of passiviza-
tion by affine feedback

Suppose a system of the form (2.1) is passivifiable and
an input coordinate transformation of the formu = v —
Ly, V(z)/LgV(z) has been applied to the system.

In transformed input coordinates, the system (2.1) is
given, upon some simple algebraic manipulations and
use of the definition of the Lie derivative, by

8V (z)/dz
TL,V(z)

z = fa(z) + [1-g(2) faa(2) + g(z)v (2.9)

The geometric interpretation of equation (2.9) is given
in Figure 1.

We clearly identify three terms in the right hand side
of equation (2.9). The first term is, according to its
definition, the dissipative term. The second term is the
workless term, and the third term is the term responsible
for the supply rate in terms of the new control input.

Note that the matrix

oV (z)/0x

L, V()

M(z) = |1 - g(z) (2.10)

is a projection operaior onto the tangent space to the
level surface 17(x) constant, along the distribution
span {g}.

Indeed, it is easy to verify that M(z) satisfies the fol-
lowing properties:

M(z)g(z) =0 Vz € X (2.11)
dVM(z)=0 Yz € X (2.12)
M2(z)= M(z) Yz e X (2.13)

2.3 Feedback controller design via passi-
vization

Suppose system (2.1) is passivifiable and assume fq(r)
is a dissipative component ol f(.) with respect to the
storage function V(2). Suppose furthermore that V()
is given in the form

V(z) = %rT:c (2.14)
Then, the state space representation (2.9) can be further
specialized to

T
z = falz) + [1 = ‘I(’t)ﬁ%&‘)‘} Foalz) +g(x)v (2.15)

From the fact that the time derivative of 1'(r) is com-
puted as
2Tt = 2T fiz)+27 [J—g(;-)—“i J Faal2)
Tg(a)] ™
+2Tg(z)v
= 7 fa(z)+ 2T g(z)v (2.16)

with the first term in the sum being strictly negative
or at most zero, it is easily seen that the above system
(2.15) may always be rewritten in the following form

2= —R(x)r - J(x)x + glx)r (2.17)

with the following trivial identifications

2T :
i) = =Rz [= sa) ] i) =~ o)z
‘ (2.18)
‘with R(z) being a positive semidefinite matrix in X', and
J(z) is an anti-symmetric matrix.

A passivity based controller can be proposed for sys-
tems of the form (2.17) by considering the following mod-
ified storage function

Va(z,2q4) = %(Jr—xd)r(.xt—rd) (2.19)
where x4 is an auxiliary state vector to be defined later.

Along the solutions of the system (2.17). the function
Vi(z, z4) exhibits the following time derivative
Va(z, z4) = (2 — 24)T [ R(2)x — J(2)2 + g(x)v = &4)

(2.20)
Completing squares in the right hand side and adding
a damping injection term of the form — R4 (2)z, so that
Ru(2) = R(z) + Rai(z) is a negative definite matrix for
all z € X, as follows,

(# = 2)T [= (R(2) + Rai(+) (+ = 24)

—J(z}x — xq) = g~ R(2)xq

—J(2)2a + Rai(2)(z — 24) + g(x)v]
(2.21)

Va(z,24)



Note that if we let the auxiliary vector z4, satisfy the
following system of differential equations

ig = —R(x)za—J()xa+ Rail ) —2a)+ () (2.22)
then the time derivative of Vo(x, wq) satisfies

—(z — 240)T R (2)(2 ~ 24)

<~ =24 (@~ 2)

Va(z,zq4) =

(2.23)

—%V(z,xd) <0

where
@ = SUP,e 1 Amar(Rm(2)) >0

3= frer Amin(Fm(r)) >0

By Lypunov stability arguments it follows that the vec-
tor z(t) exponentially asymptotically converges towards
the auxiliary vector trajectory za(t).

Hence one must judiciously choose a predetermined
trajectory for z4(t) which renders a desired equilibrium
value for z4(t), say z4(t) — z.. This may be done in
several manners with the help of the set of auxiliary
equations (2.22).

3 Application to the Regulation
of a Hemostat System

Consider the following hemostat system, thoroughly dis-
cussed in Buivolova and Kolmanovskii in [9].

. T1T2 )
2y =. u+P- + azs
1  + . +0 2
8 FAT )
Z, = beg + ——
1+ @
y = (3.1

where 2, and 25 are the concentrations of food mass and
microorganisms at the time f, respectively. The system
parameters P. @ and « and b are assumed to be known
constants. The equilibrium point, corresponding to a
constant value ¥ of the input variable u is given by

T = =5

In terms of the vector fields description (2.1) for the
above affine system we have

g=| Posgtes] [

Consider the following energy storage function

| P 2
V= 3 (27 + 23) (3.2)

The time derivative of V' along the controlled motions
of the system is given by

£y

r <u + 7~ '“|7+Q + u.r-_,)

+z (u+P+a + % )
] T+ — oo
! T +@Q

< 2 '(I.+P+<.;L'—,+——'—«)
= ‘( T 40

£y

(3.3)

where the last mequality is obtained under the assump-
tion that the variables 27 and 29 are strictly positive
for all times, which is, evidently, a physically meaning-
ful restriction. In other words, a decomposition of the
vector field f(z) is possible, including a locally dissipa-
tive component fi(z) in the region of the state space
where z; and z, are both strictly positive (we take
X = {(z1,22) € R®s.t. 21,29 > 0} C R®). The decom-
position of f in X into dissipative and non-dissipative
components is clearly given by

3z -
fd(r)=[ i ] faal2) = { e ]
oL 1+Q

The system is, thus, passivifiable with respect to the
storage function V(z).

Define a state-dependent input coordinate transforma-
tion of the form: k

LyngV

L,V (3-4)

2
v=u+ =u+P+a::g-+—--£2~~
r +@Q
Transformation (3.4) yields a passive system between
the transformed input v and the output variable z,. In-
deed, integrating the inequality (3.3) on obtains the fol-
lowing passivity relationship
2
V(e = V) < [ sieneds  (35)
0
Under the above defined input coordinate transforma-
tion the system is readily rewritten as

o e Tyla -L‘%
o 5n+Q n+Q

. 122 -

&a = —bro+ = 3.6
2 2t 50 (3.6)

In matrix notation. the system with transformed input
has the more suggestive form:

Di+ J(z) x+ R(z)z = Mv (3.7)



where, 27 = [z; 22} and

—¥ .
[(]) (1)] : *7(1')=[__(~)"=j 75° ]
1 +Q

[75e o] m= o]

where JT(z) + J(x) =0, and R(z) = RT(2) >0, as it
may be easily verified.

D

R{z)

3.1 Passivity based controller design

Consider the modified energy function Vg, defined with
the aid of an auxiliary state vector z4 = (214 224)7,
representing the desired state vector. to be determined
later.

Let V4 be given by

Va(z, z4) -;—(:c - :cd)TD(x ~z4)

e 20+ @ -2 G39)

From the results of the previous section, the follow-
ing set of auxiliary controlled differential equations yield
Va(z, z4) negative definite.

£1g = v 22 g 22 g+ R ( Z14)
1d = L+ 0 id 2+ 0 2d 1(£1 1d
Za9g = —bzag+ ;%2 Tid+ Ra(z2 — x24)  (3.10)

where R; and R are the diagonal components of the
positive definite matrix Rg(z) which, for simplicity, it
will be taken to be a constant matrix, R4;(z) = Rai =
diag[R1 Rz].

Letting 214 = T = constant, one obtains the follow-
ing dynamical controller expression, where z24 has been
substituted by the controller state variable &,

t = %%‘%')-—Rl(i:l—fl)
¢ = xl’“j F, - b€ + Rafz2— ) (3.11)

In original control variables the controller takes the form

z2(€ + T1 — 22)

u = —P—aa:l:3+—xl+Q “Rl(’:_f)
3 = 5] — 2 {Z2—
£ = i b€ + Ra (22— &) (3.12)

Figure 2 shows the closed loop behaviour of the hemo-
stat system with nice stabilization features and a sub-
stantially reduced settling time when compared with the
open loop output response, which is of about 50 time
units.

1

4 Conclusions

In this article a simple but. powerful geometric interpre-
tation has been given to the possibilities of passivify-
ing an arbitrary nonlimear system by means of partial
state feedback or. more propetly, by means of a state-
dependent input coordinate transformation. Passivity
based controllers have been mainly applied to the class
of lagrangian systems, especially, to mechanical (such as
robots) and electro-mechanical systems (induction mo-
tors, power converters, etc.). The results here proposed
apply to any system provided with a positive energy stor-
age (i.e., Lyapunov) function. To emphasize this point,
the results were applied to a biological process control
problem. in these class of nonlinear systems the concept
of “energy” is not as clear cut as in the area of mechan-
ical, electrical or electromechanical systems.

Extension of the above results to multi-input systems
is straightforward with a similar geometric interpreta-
tion.
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Figure 2: Simulations results of the passivity-based re-
gulated hemostat system.
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