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Abstract.

A dynamical sliding mode control approach is proposed for robust adaptive learning
in analog Adaptive Linear Elements (Adalines), constituting basic building blocks for
perceptron-based feedforward neural networks. The zero level set of the learning error
variable is regarded as a sliding surface in the space of learning parameters. A sliding
mode trajectory can then be induced, in finite time, on such a desired sliding manifold.
Neuron weights adaptation trajectories are shown to be of continuous nature, thus
avoiding bang-bang weight adaptation procedures.
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1. INTRODUCTION

The adjustment of learning parameters in perceptron
based feedforward neural networks has been mainly ex-
plored form a discrete-time viewpoint. The celebrated
Widrow-Hoff Delta Rule,(Widrow ¢t al., 1990) consti-
tutes a least mean square learning error minimization
algorithm by which an asymptotically stable linear con-
vergence dynamicsis imposed on the underlying discrete—
time error dynamics. Using quasi-sliding mode control
ideas ((Sira-Ramirez, 1991b) ) a modification of the Delta
Rule was proposed by Sira-Ramirez and Zak in (Sira-
Ramirez ef al, 1991a), and in (Zak ef al., 1990), whereby
a switching weight adaptation strategy is shown to also
impose a discrete—time asymptotically stable linear learn-
ing error dynamics. This algorithm is at the basis of
recently proposed identification and control schemes,
based on feedforward neural networks,(Colina-Morles et
al., 1993), and (Kuschewski et al., 1993)). To our knowl-
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edge, design of learning strategies in adaptive percep-
trons, from the viewpoint of sliding mode control in
continuous time, has not been addressed in the existing
literature. However, the relevance of ordinary differen-
tial equations with discontinuous right hand sides was
analyzed in the work of (Li ¢t al., 1989), in the context
of Analog Neural Networks of the Hopfield type with in-
finite gain nonlinearities. In that work, it is established
under what circumstances siiding mode trajectories do
not appear in such a class of neurons.

In this article a continuous time sliding mode control ap-
proach is proposed for the robust adaptation of variable
weights in Adalines, so that its scalar output variable
tracks a bounded reference signal with a bounded first
order time derivative. The zero level set of the learn-
ing error variable is regarded as the sliding surface co-
ordinate function and a discontinuous law of adaptive
weight variation is proposed which induces, in finte time,
a sliding motion which robustly sustains the zero error
condition. The sliding mode controlled weight adapta-
tion trajectories are shown to be continuous, rather than
bang-bang signals. Section 2 contains some definitions,



assumptions and derivations of the main charcteristics
of a sliding mode control approach to weight adaptation
in Adalines. In this section, the robustness of the al-
gorithm, with respect to bounded external perturbation
inputs, and bounded measurement noises, is also demon-
strated along with a derivation of the required match-
ing condition. Section 3 contains some basic examples
of relevant significance in the potential applications of
the proposed adaptive learning strategy in automatic
control applications. The examples include, both, iden-
tification of forward and inverse dynamics of unknown,
externally perturbed, nonlinear plants. Section 4 con-
tains the conclusions.

2. A SLIDING MODE CONTROL APPROACH TO
WEIGHT ADAPTATION IN ADALINES

2.1 Definitions and basic assumptions

Consider the perceptron model depicted in Fig.1 where
z(t) = (z1(1),. .., zn(t)) represents a vector of bounded
time-varying inputs, assumed also to exhibit bounded
time derivatives, 1.e.

o) = /=20 +... 4+ 22(0) < Ve Wt

&) = /2200 + .+ 82() (1)

where V; and V; are known positive constants. We de-
note by #(t) the vector of augmenied inputs, which in-
cludes a constant input of value B > 1, affecting the
bias, or threshold weight wy 41 in the perceptron model,
ie

<

Ve Vi

Z(t) = col(z1(?), ..., znalt), B) = col(z(t), B) (2)

The scalar signal yq4(f) represents the time-varying de-
sired output of the perceptron. It will be assumed that
ya(t) and g4(t) are also bounded signals, i.e.

lya®) | < Vy YVt |ga®)| <V YVt (3)

The output signal y(t) is a scalar quantity defined as:
y(t) =D wilt)ai(t) +wnpr (1) = &T(RE()  (4)
=1

We define the learning error e(t) as the scalar quantity
obtained from

e(t) = y(t) — ya(t)

()
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2.2 Problem formulation and main results

Using the theory of Sliding Mode Conirol of Variable
Structure Systems (see (Utkin, 1992)) we propose to con-
sider the zero value of the learning error coordinate e(t)
as a time-varying sliding surface, i.e.

s(e(t)) = e(t) = 0 (6)
Condition (6) guarantees that the perceptron output
y(t) coincides with the desired output signal ya(t) for
all time t > ¢, where t; is addressed as the hitting time.

Basic Problem Formulation

It is desired to devise a dynamical feedback adaptation
mechanism, or adaptation law, for the augmented vec-
tor of variable weights &(¢) such that the sliding mode
condition 1is enforced.

2.2.1. Zero adaptive learning error in finile time

Let “sign e(t) ” stand for the signum function. We then
have the following result

Theovemn 2.1 If the adapiation law for the augmented
weight vector w(t) is chosen as

z.f)(t) = - <&> k sign e(t) (M)

FT(1) (1)

with k being a sufficiently large positive design constant
satisfying

k> WV +V, (8)
then, given an arbitrary initial condition e(0), the learn-
wng error e(l) converges to zero in finite time, ty, esti-
mated by

<11 (9)
k- WV — ¥,

and a shiding motion is sustained one = 0 for allt > t},.

PROOF. The proof follows easily by using a quadratic
Lyapunov function candidate. Details of the proof are
presented in a paper to be published very soon, (Sira-
Raniirez et al., 1995)

Let p(t) = TE(% and consider the following theorem.

Theorem 2.2 If the adaptation law for the augmented
weight vector w(t) is chosen as

G(t) = —p(t)E | ()& (t) — p(t)ksigne(t)  (10)



with k being a positive design constant salisfying k >
Vi, then, given an arbitrary initial condition e(0), the
learning error e(t) converges to zere in finite time 1
satisfying

(11)
and a sliding motion is sustained on e = 0 for allt > t,.

PROOF. The proof proceeds along similar lines of that
of theorem 2.3, (Sira-Ramirez et al., 1995).

2.2.2. Average features of the adapiation mechanisms

We proceed, as it is customary in sliding mode control
theory, to investigate the average behaviour of the in-
volved controlled variables. Such an analysis involves the
consideration of the following invariance conditions,

e(t) =0; é(t)y=0 (12)
which are ideally satisfied after the sliding motion starts
on the sliding surface and is indefinitely sustained thereon.
Consideration of such invariance conditions naturally
leads to propose the substitution of the discontinuous
(bang-bang) input signals by a smooth input signal,
known as the equivalent conirol inpui. This method has
been rigorously validated in (Utkin, 1992) as the Method
of the Equivalent Control. Consider the adaptation law
{(7) and the associated error equation and substitute the
discontinuous signal £ sign e(t) by its smooth equivalent
value v, (1).

é(t) = —veg(t) + @T ()2 (1) — galt) (13)
The second condition in (12) linplies that
veg(t) = ST (8)E(t) — 9alt) V> ty (14)

Upon use of (14), a virtual, or equivalent variable weight
adaptation law can also be associated with the actual
discontinuous (bang-bang) policy described by (7). We
denote such an egquivalent adaptive weight vector by
Weq(t). One obtains, for all ¢ > ¢,

Geglt) = —p(DF (N&.q(D) + pB)Ialt)  (15)
i.e., the average variable weight vector trajectory sat-
isfies a linear time—varying vector differential equation
with forcing function represented by the bounded func-
tion yq(t). Note that wq() itself does not, necessarily,
lie in the range of (t). The obtained expression (15) de-
scribes the projection, along the range of the vector of
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augmented inputs &(t), of the derivative of the average
regulated evolution of &(%).

2.2.3. Requirements for the stability of the average controlled
wetghts dynamics

Proposition 1 Suppose the system u;)eq(t) = F(1)wey(t)
s uniformly stable and let y,(t) be absoultely integrable.
Then, the solutions of (15) ure bounded

PROOF. See (Sira-Ramires et al., 1995).

Proposition 2 The matriz F(t) is bounded if (1) is
bounded

PROOF. See (Sira-Ramirez et al., 1995).

It is well known (Brockett, 1970) that if the matrix
F(t) is bounded, then exponential stability is equiva-
lent to the uniform integrability, over arbitrary interval
of times, of the norm of the corresponding transition
matrix. The following theorem is proved in (Brockett,
1970). The next result touches upon a special form of the
well knwon condition of persitency of excitation, of com-
mon occurrence in linear and nonlinear adaptive control
schemes (see Sastry and Bodson (Sastry et al., 1989)).
Let I(t) be defined as

()27 (t)

(T (@)z())

Theorem 2.3 Let #(t) be bounded on (—oc, +oc), more-
over, assume that the following form of the persistency
of excitation condition holds uniformly in t : There ex-
1sls postlive constants 6 and ¢, such that the following
matric condilion is satisfied

I(t) = (16)

t+4
/ ®(t,0) Uo)®T (t.o)do > el VE >t (17)

1

Then, the equivalent adaptation law (15) uniformly yields
a bounded trajectory for the wvector of weights Geq(t),
Jor every bounded signal §q(t), if, and only if, the au-
tonomous system Weq(t) = F(t)we (t) is exponentially
stable.

PROOF. See (Sira-Ramires el al., 1995)

Condition (17) admits the following scalar form ((Sastry
etal., 1989))



t+6
/ To(t,0) (0)8T(t,0) z do
t

> eVt >t ; z]=1 (18)

which is a condition on the energy, averaged over all
directions of a unit sphere, of the nonsingularly trans-
formed input vector, x(7) (1, 1) #(t)/(ET(t)Z(1)).
This means that the vector functlon x(7) is quite an
“active” time-varying vector, so that the integral of the
matrix ¥(¢)%7 (t) is uniformly positive definite over any
interval of finite length 4.

2.3 Robustness with respect to external perturbations
2.3.1. Inputs with bounded additive noise

Consider a vector-valued norm-bounded ezternal per-
turbation nput, denoted by £(t) = (&1(1),....& (1)),
which additively affects the values of the input vector
z(t) to the perceptron. It is assumed that the pertur-
bation input £(¢) is not “larger” than the input z(¢),
ie.

<

&) 1= €30 + ...+ €2(0) < Vg < Vi W2 (19)

The time derivatives of the components of £(t) are as-
sumed to be also bounded

1€ 1= /éxe) +

We define the augmented external perturbation input
vector as

+E2() < Ve vt (20)

£(t) = (1), &(1),0) (21)
This means that it is implicitly assumed that the con-
stant input B to the bias weight wp, (1) is a fixed value
which does not contain the influence of perturbation sig-
nals. The perturbed learning error é(t) = y(t) — ya(t) is

now given by

= [£(t) + )T (1) - ya(t) (22)
Note that, in spite of the fact that the perturbed input

signal :c(t) +£(t) is actually available for measurement

, its time derivative Z(t) + £() is not. This means that
such time derivatives can not be used in the weight adap-
tation law. Hence, only an adaptation law of the type
proposed in (7) can be actually devised for sliding mode
creation on the zero learning error hyperplane. Let h(2)
be defined by

#(t) +£(t)
[#(t) + EDIT[2(t) + £(2)]

h(t) = (23)
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By virtue of the above considerations, we shall center
our attention on the perturbed adaptation law:

w(t) = —h(t) k signé(t) (24)
The weight adaptation law (24) results, as it easily ver-
ified, in the following discontinuous perturbed learning
error dynamics

é(t) = —k sign é(t) + @ (O)[E() + £(1)] — §a(t) (25)

3. IDENTIFICATION OF FORWARD AND
INVERSE DYNAMICS FOR THE KAPITSA
PENDULUM

Here we consider a truly noulinear system of the non-
flat type, studied by Fliess and coworkers in (Fliess et
al., 1993), consisting of a unit mass rod with a suspen-
sion point which freely moves only on a vertical direc-
tion. The Kapitsa pendulum is, thus, an inverted pendu-
lum where the control actions are constrained to move
the suspension point only along a vertical axis. We con-
sidered a nonstabilizing open loop control u(t), applied
to the plant, and obtained the corresponding output
Yp(t) of the nonlinear system, represented by the angu-
lar position of the rod with respect to the vertical axis.
In the forward dynamics identification problem y,(#) is
regarded as the desired signal, y4(¢), to be followed by
the neuron output y(¢). In that case, the input function
u{t) to the system, is also the input to a stable tranver-
sal filter SF. For the inverse dynamics identification the
roles of u(t) and y, () were reversed, with respect to the
neuron system. The open loop control function u(t) was
chosen, according to ((Fliess et al., 1993)), of the form

u(t)= Ay + A, COS(%)-{-A;-} sin(%) (26)
where Ay, A, and A3 are constant parameters. The non-
linear system is assumed to be unknown and only its in-
put and output signals are assumed to be measurable for
the adaptation process. For simulation purposes, how-
ever, the following model was used

u(t)

a(t) =p(t) + - sin a(t)

p(t) = (% u:' cosa(t)) sin a(t) — u(t) p(t) cosaft)
=uft)

yp(t =a(l) (27)

where (1) is the angle of the rod with the vertical axes,
p(t) is proportional to the generalized impulsion. The



constants g and [ represent, respectively, the gravity ac-
celeration and the length of the rod. The velocity of the
suspension point acts as the control variable wu(t). The
variable z(¢) is then the vertical position of the suspen-
sion point. Numerical values for the parameters of the
Kapitsa pendulum model were set to be ¢ = 9.81[Z5
and { = 0.7[mts]. An open loop control input signal u(z)
of the form given in (26) with the following constant
parameters

Ay =04 ; Ay =2 ; A3 =3; ¢ = 0.05

was used, for both tasks. The input variables to the neu-
ron are obtained from the state of a transversal stable
filter, SF, consisting of a string of integrators. The scalar
input function wu(t¢) to the stable filter represents the
physically available signal to be processed by the neu-
ron -(usually a plant input or output)-. The SF module
was designed as a stable low pass filter with the following

state representation

z1(t) = za(?)

z2(1) = z3(t)

23(t) = —z1(t) — 3z2(t) — 3za(t) + u(t)
24(t) =0

(28)

where the state variable z4(¢) represents the dias compo-
nent with initial condition equals to B. Such a constant
parameter is taken, for this example, as B = 1. The
results of a simulated forward dynamics identification
taks, for an Adaline with a total of 4 weights ( includ-
ing one bias variable weight ) are shown in Fig.2. In
this figure, the desired output trajectory yq(t) is con-
stituted by the nonlinear pendulum system output i.e.
yp(t) = a(l) ya(t) and the input u(t) to the SF-
module is the same input given to the nonlinear system.
The learning (tracking) error response e(¢) is shown to
converge to zero in approximately 0.02 sec. To alleviate
the “chattering” phenomena, present in the neuron out-
put and learning errror responses, as well as to speed up
the simulation time for the SIMNON package, the fol-
lowing standard substitution was adopted for the ideal
switch function

e(t)

ksigne(t) = k FOEY;

(29)

with 6 = 0.05. Highly accurate following is seen to be
achieved without chattering around the desired output
signal. The open loop unperturbed input signal trajec-
tory u(t), afecting both the pendulum and the SF-neuron
arrangement, is also shown in this figure. In the simula-
tion no additive noise affecting the input signal u(t) was
assumed. The value used for the variable structure gain
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k was set to k = 5. The computer simulation results
shown in Fig.3 illustrate the performance of the neu-
ron when the input and desired signals are subjected
to noise. The inverse dynaniics identification task was
also implemented using the same SF-module described
above. The variable structure control gain used in this
case was k = 9(0. The simulation results, without ad-
ditive noise for the measured output signal y,(t) of the
nonlinear system, are presented, for a 4 weights Adaline,
in Fig.4. Fig.5 presents the corresponding results for an
additive noise input signal, of the same characteristics
as before, affecting the measured signal y,(t) given as
an input to the filter-neuron combination. In this case
the value of k was substantially icreased to & = 1000
due to the large values of the first order time derivative
of the desired output signal y4(t), represented now by
the noisy signal u(t) +£(t), with u(¢) as given in (26).

4. CONCLUSIONS

In this article a new dynamical discontinous feedback
adaptative learning algorithm has been proposed, for
linear adaptive combiners, which robustly drives the learn-
ing error to zero in finite time. The components of the
vector of variable weights are assumed to be provided
with continuous time adaptation possibilities. The dy-
namical adaptive learning scheme is based on sliding
mode control ideas and it represents a simple, yet ro-
bust, mechanisin for guaranteeing finite time reachabil-
ity of a zero learning error condition. The approach is
also highly insensitive to bounded external perturbation
inputs, measurement noises and designed input filter pa-
rameters. Bounded average weight evolution is guaran-
teed under several conditions relative to the underlying
linear time-varying system describing the average evoul-
tion of the vector of adaptive weights. Some of these
conditions are closely related to those of persistency of
excitation and thus links our approach with standard
adaptive control results. Chattering—free dynamical slid-
ing mode controllers for nonlinear systems have been re-
cently proposed by Sira-Ramirez ((Sira-Ramirez, 1992))
using input-dependent sliding surfaces. The adaline case
study presented here represents an instance in which the
sliding surface (zero learning error condition) is actually
an “input” dependent manijold. The obtained sliding
“controller” is thus continuous rather than bang-bang.

Extensions of the results to niore general classes of mul-
tilayer neuron arrangements is being pursued at the
present time, with encouraging results.
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