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Abstract. In this paper the design of observers for a class of nonlinear uncertain
systems, transformable into the Generalized Observer Canonical Form, is addressed.
A backstepping-like algorithm is used to design a dynamical adaptive control to ensure
the output tracks a prescribed bounded reference signal, based on the estimation of the
unmieasured states. The destabilizing effects of the observation errors are compensated

via nonlinear damping terms.
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1. INTRODUCTION

In the last few years nonlinear adaptive control of plants
having unknown parameters and known nonlinearities
has attracted the attention of many researchers and
practitioners. Important contributions to this area have
been given in various control design algorithms based
on the backstepping approach (see, for example, Kan-
ellakopoulos et al., 1991a,b,c; Kokotovi¢ 1991, Krstié
et al. 1992), which were recently compiled in Krsti¢
et al, (1995). The adaptive backstepping algorithms
were originally developed for a broad class of linear-
izable uncertain nonlinear systems and transformable
into either pure or strict feedback forms (see Kokotovié,
1991), guaranteeing global tracking and stabilization for
plants in this latter class of systems. Then, Seto et al.
(1994) extended the class of systems stabilizable via
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backstepping to nonlinear systems with a triangular struc-
ture.

More recently, a recursive procedure has been proposed
by Sira-Ramirez et al. (1995), which implements the fun-
damental ideas related to the backstepping design with
tuning functions, developed by Krsti¢ et al. (1992), in
combination with dynamical input-output linearization.
The general algorithm was reported by Rios-Bolivar et
al (1995b), and is applicable to a class of observable
minimumm-phase uncertain nonlinear systems. Two ma-
jor advantages characterize this approach. Firstly, trans-
formation of the controlled plant into triangular, pure or
strict forms are not required. Secondly, dynamical ad-
aptive controllers are obtained from this procedure be-
cause the control input and its derivatives are allowed
to appear at intermediate steps of the algorithm. This
aspect is particularly important when the approach is
combined with discontinuous control schemes, such as
Pulse Width Modulation (PWM) or Sliding Mode Con-
trol (SMC), because the resulting controllers achieve



robust asymptotic stability with considerably reduced
chattering (see Sira-Ramirez et al. 1995; Rios-Bolivar et
al. 1995a).

In previous work considering dynamical adaptive back-
stepping control, full-state measurement has been as-
sumed (Rios-Bolivar et al. 1995b). Here only the out-
put is measured and an observer is designed to generate
the unmeasured states. Then, dynamical adaptive back-
stepping is used to drive the output to track a desired
bounded reference signal.

2. PROBLEM STATEMENT

The proposed algorithm in Rios-Bolivar et al. (1995b)
involves nonlinear transformations of the controlled plant
into tracking error coordinates depending on the control
input and its derivatives. It is applicable to the class of
observable minimum-phase nonlinear systems, dynam-
ically input-output linearizable and with constant but
unknown parameters, which can be represented by

[)
&= fo(2) + go(z)u + Z (Givix) + Ospi(x)u) (1)

i=1

y=h(z)

The same problem has been solved by Krstié et al. (1995),
using static controllers when system (1) is placed into
either pure or strict feedback forms. Here the practical
restriction of full-state measurement is relaxed, by as-
suming that only the output is measured, while the class
of uncertain nonlinear systems corresponds to systems
with only output-dependent nonlinearities multiplying
the uncertain parameters. Firstly, an adaptive observer
1s designed for the system placed into the Generalized
Observer Canonical Form (GOCF) (Keller and Fritz
1986), and then a modified version of the algorithm
in Rios-Bolivar et al. (1995b), incorporating nonlinear
damping terms, is used to design dynamical adaptive
output tracking control.

3. OBSERVER DESIGN

An appealing problem in control theory is the design
of state observers for nonlinear systems (see, for ex-
ample, Krener and Respondek 1985). This problem be-
comes more difficult in the presence of uncertain para-
meters. Various contributions have been reported for
uncertain systems. For instance Kanellakopoulos et al.
(1991¢c) and Marino and Tomei (1991) have proposed
the use of stable filters, or a combination of stable fil-
ters and an observer derived from a filtered transform-
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ation, when system (1) is transformable into the output
feedback form. Marino and Tomei (1991) have developed
state observers and output-feedback control for systems
transformable into the adaptive observer form.

The problem of designing observers for nonlinear sys-
tems, involving the control input and its derivatives,
has been studied by Keller and Fritz (1986}, and a solu-
tion has been proposed, provided that the system can
be placed into the GOCF. However, the results were
obtained for nonlinear systems with no uncertainties. In
the next two subsections the method proposed by Keller
and Fritz is presented and, it is shown that under cer-
tain conditions an adaptive observer can be synthesized
from the GOCF for uncertain systems. The method con-
sidered here avoids the use of filters.

3.1 Observer design for nonlinear systems with derivatives
of the input

Consider the nonlinear system with no uncertainties

z = fo(z)+ go(z)u
y = h(x) (2)

where £ € R" is the state, u € R the control input, y € R
the output. It is assumed that (2) is a minimum-phase
system with a well-defined relative degree p,ie. 1 < p <
n. We also assume that (2) satisfies the observability
condition

i, y(n-—l)]

(‘)[yyy) =n

pe (3)

rank

Then (2) can be transformed into the Generalized Ob-
servability Canonical Form (GOBCF)

2','1 =29

En_1=2Zn (4)
in = flz,u, 0, ..., ul""P)
y=2

This GOBCF was initially obtained by Zeitz (1984) for
time-variant nonlinear systems, and then by Fliess (1990)
from a differential algebraic viewpoint. A solution to
the problem of designing state observers for systems
transformable into GOBCF, when the full state is not
measured, has been given by Keller and Fritz (1986) us-
ing the following Generalized Observer Canonical Form
(GOCF)
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& = —ao(y, u, 1, ..., ul""")) (5)
G=Cint — wimy(yu, i, " TPTHD)
Ye =&n = c(y)

where y is the output of (2). The GOCF can be obtained
from (4) if the scalar function f(z,u,%,..., u("=*)) ful-

fills a special structural condition derived from the fol-
lowing Generalized Characteristic Equation (GCE)

1=2,...,n

d"e(y) + Z A" ton-ilyy, ... u(k_p)) =0 (6)

i=1

with the differential operator d defined as

k-1 T
d* vz, u) = [&i)x vz, u)] (fo(2) + go(z)u)
ddt! T
[ 70 v(z, 'u,):| U (7

For a second order systern with relative degree p = 1,
the GCE is reduced to

d*c(y) + doq(y, u) + ao(y,u,4) = 0 (8)

and applying the differential operator d to the system
transformed in the GOBCF (4)

d*c(y) , | de(y) . deni(y, u)
dy2 25 + dy f("’)uu U)+—8y-—z
+ﬁ%¥ih+uwmwm=o )
1

The structural condition

flz,u, %) = ko(21)z5 + k1(21, w)z2 + ko(21, 4, w)(10)
results. If this condition is fulfilled, the functions ko, &1
and ks are known and the three unknown functions

e(y), a1 and vg can be determined from the three partial
differential equations

de(y) _ de(y)

—ka(z1)

dy — dy?
de(y O (y, u
R ()
. de(y)

w+ gy, u, )

—ko(z1, 1, %) =

dy
By rewriting the GOCF (5) as follows

dai(y, u)
u

E=AE +alyu,...,u" M)
ye=cT¢ (12)

with
00...00
10...00 —ao()
A= - ) a(): (13)
00...10 —an-1()
T =10,...,0,1]

an observer can be readily obtained as

£=Al+a(y,u,. .., w0 + K (€ — &)
y= cT£ (14)
with K = [k1,..., kn]T a vector of positive gains. Thus,

the observer error e = £ — £ exhibits the exponentially
stable dynamics

é = Age (15)
with
00...0 -k
10...0 —ksg
Ag=(A-KH=1|. . L (16)
00...1—k,

3.2 An ezample

Consider the second order nonlinear system

&1 = —x, +IE%+U
To=xi1T2+Uu (17)
y=1x2

The observability condition (10) is satisfied if x5 # 0.
Therefore only equilibrium points different from the ori-
gin can be considered for this example. The control-
dependent. coordinate trasnformation

21 =Y=2T2
=y =z1z9tu (18)
places (17) in the GOBCF

Z9 = (i> 22— (1+—u—>22
21 21

+(1+21)U+Z:13+u:f(z5u’d) (19)

Y=z



Note f(z, u, @) satisfies the structural condition (10} and
the functions kg, k; and ko are identified as

ka(z1) = ,i ki(z1,u) = — (1 + zu_1> (20)

z
ko(zy,u,u) = (1 + 20 )u+ zf +u

Then, solving the partial differential equations (11)

e(y) = e(z1) =lnz (21)
wm()=lnzm — = 5 ap()= —— —u—2?
< b4
Therefore, the coordinate transformation
_ _t& | _ [In(z2) + a1
¢=2@)= [51] - [ In(z2) (22)
places the system (17) into the GOCF
b=ty +u
Yy
: u
€z=51—lny+§ (23)
Ye = &
and, finally, the observer is
. u ) .
& = 7 +y+ut k(&)
) . u -
& =6 —Iny+ 7 + k2(€2 — &2) (24)

Ye =&
This method is proper when the system order is low.

However, with increasing order the structural conditions
become stronger (Keller and Fritz 1986).

3.3 Observer design for a class of uncertain nonlinear
systems

Consider now the case with parametric uncertainties,
under the condition that the nonlinearities multiplying
the uncertain parameter depend only on the output vari-
able

&= fo(z) + go(z)u + Z 0 (y) (25)

y=h(z)

If the output dependence of these nonlinearities is invari-
ant to the nonlinear transformation & = ®(z), placing
(25) into the GOCF, the system (25) is transformable
into the system

148

P
E=Af + a(y,u,...,u" ")+ Zﬂﬂfh(y) (26)

i=1
y=c'¢
with A, ¢ and o defined as in (13) and ¢; : £ — R
smooth functions for i = 1,. .., p. Therefore, the follow-

ing system

g: A€ + a(y,u, .. .,u("_p)) + K(& — én) + \I’(y)Té

y=c"¢ (27)
with
V1Y) - Ypa(y)
¥(y)" = : : (28)
wl,n(y) e "»bp,n(y)
is an observer for (26) and the error system yields
¢ = Age + U ()T (29)

where Ag = A—KcT, e = £—€ and § = #—6. This error
system possesses a strict passivity property from the
input 4 to the output ¥(y)e, i.e. the nonlinear operator
6 — W(y)e is strictly passive (see Krsti¢ et al. 1995 for
details). Therefore, the following parameter estimate

6 =19 =Tinen (30)

will be used as the first tuning function.

4. DYNAMICAL BACKSTEPPING CONTROL
DESIGN

In this section a modified version of the algorithm pro-
posed by Rios-Bolivar et al. (1995b) is used to design
a dynamical adaptive tracking control. The differences
are due to the incorporation of an adaptive observer to
estimate the unmeasured states, and damping nonlin-
ear terms to compensate the destabilizing effects of the
observation errors (similarly to those used by Krsti¢ et
al. 1995). Here, for reasons of limited space, we describe
the method only for a second order system with relative
degree one and in the GOCF

&1 = —ap(€z,u, ) + p1(€2)0
€y =& — (62, u) + p2(&2)0
ye =&

€2y,

By using the observer (27) and considering the para-
meter estimate

é =70 = F(pzez (32)
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as our first tuning function, the derivative of the tracking
error z; = €3 — &, is given by

G = & — ar(Ea, 1) + pa(E2)0 — & + 9(€2)0 + €1(33)
Note that €. is the transformation of the bounded de-
sired reference signal y,. into the € coordinates. Using

the Lyapunov function
or—'4 (34)
with I' = T'T > 0, the time derivative
Vi=x [51 —ay(&a,u) + <P2(52)é - ﬁr]
+zie0 + 607! (—0 + 7+ F21302> (35)
is obtained. Taking the second tuning function as follows
6=71 =1+ Tzypn = Dpales + 21) (36)

and defining our second error coordinate as

2y =€ —ar(&a,u) + P(&2)0 — &+ (e1 4+ d1)z1(37)

with ¢y and d; positive design parameters, Vi becomes

‘./1 = -—((:1 + d]);’lz + 2129+ 2161 + éF_l(—é-l- Tl)(38)

The time derivative of z9 1s

fy=—ag+ 910 + w(zo — (1 + di)z1 + & + 20)

—-%u + 0o — & — (c1 + d1)é +wey (39)

with
6671 8@2

5t e% (40)

w:cl+d1—

Augmenting the Lyapunov function

Vo=V +

SN

(41)

z

N | -

the time derivative is

VZ = —Clziz - dlzf + 21y + él—‘_l(—g + 71+ FZQQOQOJ)
29tz — g+ @19+w(z;: —(e1 +di)x +57-)

zwey (42)

Finally, the actual update law for the unknown para-
meters yields

6 =75 =71+ Tzapsw = Tpales + 21 + 2w) (43)

and the dynamical adaptive control is

—daw®zy — e9z9 = —ag + 910 + w(za — (c1 + di)z1 + &)
dot
Ou

—(e1 +d1)ér (44)
where —dyw?z, is the second nonlinear damping term

to compensate the destabilizing effect of the observation
€error €.

7 — i+ oy — &,

5. EXAMPLE

The following example illustrates the use of this algorithm.
Consider

z)=—x +z§+u+9m§
Ty=1ri12s+u+ ez:j (45)
Yy=1x2

Note that the nominal system (8 = 0) coincides with
the system (17). Therefore, applying the transformation
(22) on (45) yields

51=%+y2+u+0(y+y4)
ézzsl—lny+§+9y (46)

ve = &2

or, fully transformed into the € coordinates

£ = wexp(—€3) + exp(2€3) + u + 0(exp(E2) + exp(4€2))
€2 =£1 — €y + uexp(—£2) + 0 exp(€2) (47)
ye =6

which is obviously in the GOCF (31) with

an(€2,u) = —uexp(—E€y) — exp(2€2) — u
1&g, u) = €2 — uexp(—&2) (48)
©1(€2) = exp(€2) + exp(4€2)
©a(€2) = exp(&a)

Computer simulations were obtained to illustrate the
tracking performance of the designed dynamical adapt-
ive backstepping control/observer. Figure 1 shows the
tracking performance for a smooth transition of z3 between
two equilibrium points.
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Fig. 1. Response of z;. tracking performance, control
input, observation errors and parameter estimate

6. CONCLUSIONS

An alternative method for the design of observers for a
class of nonlinear uncertain systems, transformable into
the GOCF, was studied. A backstepping-like algorithm
yields a dynamical adaptive control driving the output
to track a prescribed bounded reference signal. The con-
trol design algorithm is based on the estimation of the
unmeasured states and incorporates nonlinear damping
terms to compensate the destabilizing effects of the ob-
servation errors. Computer simulations were carried out
for a second order nonlinear system.
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