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Abstract

A sliding mode control strategy is proposed for the syn-
thesis of adaptive learning algorithms in perceptron-
based feedforward neural networks whose weigths are
constituted by first order, time-varying, dynamical sys-
tems with adjustable parameters. The approach is
shown to exhibit remarkable robustness and fast con-
vergence properties. A simulation example, dealing
with an analog signal tracking task, is provided which
illustrates the feasibility of the approach.
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1 Introduction

The discrete-time context has dominated all proposed
adaptive learning strategies in perceptron-based feed-
forward Neural Networks. The celebrated Widrow-Hoft
Delta Rule (see Widrow and Lehr, [9]) constitutes a
least mean square learning error minimization algo-
rithm by which an asymptotically stable linear conver-
gence dynamics is imposed on the underlying discrete-
time error dynamics. Using quasi-sliding mode control
ideas (see Sira-Ramirez 4] ) a modification of the Delta
Rule was proposed by Sira-Ramirez and Zak in [6], and
in [10], whereby a switching weight adaptation strat-
egy is shown to also impose a discrete time asymptot-
ically stable linear learning error dynamics. This al-
gorithm is at the basis of recently proposed dynamical
systems identification and control schemes, based on
fecdforward neural networks, {see Colina-Morles and
Mort [1], and Kuschewsky et al, [2]). An entirely dif-
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ferent viewpoint in perceptron-based adaptive learning
has been recently proposed by considering a class of
problems defined on analog (i.e., continuous time) ada-
lines, or perceptrons. In correspondance with such a
setting, continuous time - rather than discrete time -
adaptive weight adjustment needs to be tackled. From
such a continous time viewpoint, the design of learning
strategies in adaptive analog perceptrons, from the per-
spective of sliding mode control, has been recently ad-
dressed in the work of Sira-Ramirez and Colina-Morles
[5]. The relevance of ordinary differential equations
with discontinuous right hand sides, or Variable Struc-
ture Systems (see Utkin, [7]), was analyzed in the work
of Li et al , in [3], also in the context of Analog Neural
Networks of the Hopfield type with infinite gain non-
linearities. In that work, it is established under what
circumstances sliding mode trajectories do not appear
in the behavior of such a class of neurons.

In this article the continuous time sliding mode con-
trol approach for adaptive “static” weight adjustment
problem in adalines is briefly revisited closely follow-
ing the exposition in [5]. Motivated by the dynamical
character of the resulting sliding mode control solution,
we proceed to propose a new type of perceptron, ref-
ered to as: dynamical adaline, where all weights are
substituted by first order, linear, time-varying dynam-
ical systems. The weight adjustment maneuvers, from
a sliding mode perspective, are now to be carried upon
the time-varying “gains” and the time-varying “time
constants” of the proposed dynamical “weights”. On
such a fixed dynamical structure for the perceptron
weights, the sliding mode control strategy results in a
more versatile, simpler, and easier to implement adap-
tive learning algorithm. The basic features of the pro-
posed approach are not only fast convergence but, also,
enhanced robustness with respect to unknown exter-
nal perturbation inputs and measurement noises. Such
advantageous features are, in general, characteristic of
sliding mode control adaptive schemes.



Section 2 contains the fundamental definitions, as-
sumptions and derivations of the main characteristics
of a sliding mode control approach to static and dynam-
ical weight adaptation in adalines. Section 3 contains
an illustrative example exploring the behaviour of the
proposed dynamical weight adjustment algorithm in an
output signal tracking problem. Section 4 contains the
conclusions and suggestions for further research.

2 Dynamical Weight Adaptation in Adalines

2.1 Background Results

Consider the perceptron model depicted in Figure 1
where z(t) = (21{t),...,za(t)) represents a vector of
bounded time-varying inputs, assumed also to exhibit
bounded time derivatives, i.e.

lz@ll = 2O+ +220) <V vt
Ie@ll = Va0 +...+420) <V w

(2.1)
where V; and V; are known positive constants.

We denote by Z(t) the vector of augmented inputs,
which includes a constant input of value B # 0, affect-
ing the bias, or threshold weight wy, 41 in the perceptron
model, i.e

&(t) = col(z1(t), ..., za(t), B) = col(z(t), B) (2.2)

The vector w(t) = col(wi(t),...,wn(t)) represents the
set of time-varying weights. It will be assumed that,
due to physical constraints, the magnitude of the vector
w(t) is bounded || w(t) I< W V¢, for some constant
W. We also define the vector of augmented weights by
including the bias weight component
w(t) col(wi(t), ..., wn(t),wns1(t))

ol (@(t), wat1(8)) (2.3)

Similarly, &(t) is assumed to be bounded at each in-
stant of time ¢ by means of

() ll= \fol @)+ +w2(t) + iy () W Ve
(2.4)

for some constant W.

The scalar signal y4(t) represents the time-varying de-
sired output of the perceptron. It will be assumed that
y4(t) and ya(t) are also bounded signals, i.e.

{ya(ty |

<
lga(t) | < Vg Vit (2.5)

The output signal y(t) is a scalar quantity defined as:

(1)

Zw.»(t):c,-(t) +wa1(t)

WP (O)(t) + wnpa (1) B = &7 ()E(1)
(2.6)

]

We define the learning error e(t) as the scalar quantity
obtained from

e(t) = y(t) — ya(t) 2.7

The nonlinear function I'{y) is generally assumed to be
an odd function of y, i.e. T'(y) = —I'(—y), known as
the activation function. The activation functions are
relevant to the analysis of networks involving several
layers of neurons, which we will not be considering here.

Using the theory of Sliding Mode Control of Variable
Structure Systems (see [8]) we propose to consider the
zero value of the learning error coordinate e(t) as a
time-varying sliding surface, i.e.

s(e(t)) =e(t)=0 (2.8)

Condition (2.8) is, therefore, deemed as a desired con-
dition for the learning error signal e(t) and one which
guarantees that the perceptron output y(¢) coincides
with the desired output signal y4(t) for all time ¢ > ¢,
where ¢, is addressed as the hitting time.

Definition 2.1 A sliding motion is said to exist on a
sliding surface s(e(t)) = e(t) = 0, after time t, if the
condition s(t)5(t) = e(t)é(t) < 0 is satisfied for all t in
some nontrivial semi-open subinterval of time of the
form [t,t) C (—o00,ts).

It is desired to devise a dynamical feedback adaptation
mechanism, or adaptation law, for the augmented vec-
tor of variable weights & (t) such that the sliding mode
condition of definition 2.1 is enforced.

Let “sign e(t) ” stand for the signum function, defined
as:

+1 fore(t) >0
sign e = 0 fore(t)=0 (2.9)
—1 fore(t) <0

We then have the following result,



Theorem 2.2 If the adaptation law for the augmented
weight vector &(t) is chosen as

bty = (szt(t)()> e
£
= BT 0o k sign e(t)
(2.10)

with k being a sufficiently large positive design constant
satisfying .
k>WV: +V; (2.11)

then, given an arbitrary initial condition e(0), the
learning error e(t) converges lo zero in finite time, )y,

estimated by
0 < — 1O
k—-WV; -V
and a sliding motion is sustained on e = 0 for all t >
ty.

(2.12)

Proof see {5}

Note that the proposed dynamical feedback adapta-
tion law for the vector of weights in (2.10) results in a
continuous regulated evolution of the vector of variable
weights &(2).

Note also that if the quantity i(t) is measurable, one
can obtain a more relaxed variable structure feedback
control strategy than the one obtained in (2.10). Gen-
erally speaking, such an adaptive feedback strategy for
the variable weights requires smaller design gains & to
obtain a corresponding sliding motion.

Since such a case is of some practical importance, we
summarize its details in the following theorem, whose
proof can be found in [5]

Theorem 2.3 If the adaptation law for the augmented
weight vector &(t) is chosen as

W ) o
w(t) _:E—Tm (k sign e(t) + &7 (1)(t))
205 P
( (1 )z(t))w(t) - (W) k sign e(t)
(2.13)

with k being a positive design constant satisfying
k>V (2.14)

then, given an arbitrary initial condition e(0), the
learning error e(t) converges to zero in finite time t)

satisfying o) |
e

k=Vy

th < (2.15)
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and a sliding motion is sustained on e = 0 for allt >
ty.

The proposed solution for cf:(t) in (2.13) is, necessarily,
aligned with the augmented vector of inputs Z(t). The
total disregard for the effect of the scalar signal y4(2) in
the above adaptation schemes, (2.10) and (2.13), arises
from the implicit assumption that such a signal is not,
generally speaking, measurable in practise, nor can it
be estimated with sufficient precision. The previous
theorem shows that as long as y4(¢) is bounded, the
adaptation policy always manages to bring the learn-
ing error to zero in finite time. A similar remark can
be made about the control law in (2.10). Figure 2 de-
picts the (instantaneous) geometric features lying at
the basis of the proposed algorithm.

2.2 Adalines with Dynamical Weights

Consider an adaline in which the traditional adjustable
weights have been substituted by first order, linear,
time-varying, dynamical systems described by

(2;16)

%= a,-(t)y.- + K;(t)z.-(t) ; 1,..

Ln
where the time-varying scalar functions a;(t) ; i =
1,...,n and K;(t) ; ¢ = 1,...,n play the role of ad-
Jjustable parameters. For the lack of better names, we
sometimes improperly will refer tosich parameters as,
“gains” and “time constants”, respectively, in plain
reminiscense of the traditional terms associated with
the time-invariant counterparts (see figure 3).

As in traditional adalines, z(t) = (z1(2), ...,z (t)) rep-
resents a vector of bounded time-varying inputs, also
assumed to possess bounded time derivatives. We de-
fine the vectors a(t) and K (t) as n-dimensional vectors
constituted by the “time constants” and “gains”, i.e.,

at) = col(aift),...,an(t))

K(t) = col(Ki(t),...,Ka(t)) (2.17)
The vector y(t) is constituted by the outputs of
the dynamical systems acting as weights, y(t) =
(1(2),...,ya(t)). Each one of the outputs y(t) ;i =
1,...,n, qualifies as the state of the corresponding dy-

namical weight. The scalar signal yq(t) represents the
desired output of the perceptron and it constitutes the
signal to be tracked by the adaline scalar output yg(t).
It will be assumed that y4(t) and yq(t) are also bounded
signals. The output of the perceptron, yo(t), is given

by
w(t) = Z w(t) (2.18)

It is assumed that the set of dynamical weights, char-
acterized by the state vector y(¢), has an initial state
vector given by y(tg) The learning error, denoted by



e(t), is the scalar quantity defined by,

e(t) = yo(t) - yd(t) (2.19)

As in the traditional case, it is desired to derive a feed-
back adaptation law for the adjustable parameter vec-
tors a(t) and K(t), such that the learning error e(t)
reaches the value zero, for any set initial conditions
- represented by the vector y(to) - of the dynamical
weights. Moreover it is desired that once the learning
error reaches the value zero, such a value is sustained
for the remining time horizon.

In the following theorem we assume that the external

signal y4(t) and y4(t) are bounded as in (2.5).

Theorem 2.4 If the adaptation laws for the adjustble
parameters of the dynamical weights is chosen as

[ ] =~ (o ieor) [ 20 ] e

with W being a sufficiently large positive design con-
stant, satisfying W > V; then, given an arbitrary set
of initial conditions y(to), the learning error e(t) con-
verges to zero in finite time ty,, estimated as,

fy(to) — ya(to)]
<SEWov

and a sliding motion is sustained on e = 0 for all t >
th.

1)

Proof

Compute the time derivative of the learning error as

) = 360 - i)
i=1

n

2

i=1

T OU) + K ()2(0) - it
t 5

o) K@) | 243 | - at0

—y4 — Wsign e(t)

(@i ()wi(t) + Ki(t)zi(t)) — 9a(?)

where the last equality is obtained after substitution of
the proposed parameter adaptation laws (2.20). Evi-
dently, for all e(t) # 0,

e(t)é(t) —e(t)ya(t) — Wle(t)|
le(®)|Vy — Wle(t)|

—le(®I(W - V5) <0

A

The learning error e(t), thus, satisfies a differential
equation with discontinuous right hand side whose so-
lution exhibits a sliding regime in finite time ¢ [8].
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Under ideal sliding mode conditions (i.e., e(¢) = 0 and
é(t) = 0), the vectors of “equivalent adjustable param-
eters”, denoted by, a.4(t) and K.4(t), are given by

aeq(t) | _ ya(t) y(t)
[0 )= roriar [ 49 ] e
As it easily verified, this choice renders
vo(t) = 9alt) V> t, (2.22)

This fact, added to the ideal condition e(t) = 0 V¢ > 5,
implies that yo(f) = y4(t) V ¢ > th. Ideally, perfect
tracking is thus guaranteed for all bounded external
output signals which have bounded time derivatives.

A relaxed version of Theorem 2.4 is obtained if one

assumes that the signal y4(t) is measurable.

Theorem 2.5 If the adaptation laws for the adjustble
parameters of the dynamical weights is chosen as

a(t) | _ [ya(t) — Wsigne(t)\ [ ()
[ K(t) ] = (ny(t)uz +Ilz(t)II2) [ )| %

with W being a sufficiently large positive design con-
stant, then, given an arbitrary set of initial conditions
y(to), the learning error e(t) converges to zero in finite
time ty,,given by,

ly(to) — ya(to)|
w

and a sliding motion is sustained on e = 0 for allt >
ty.

th = (2.24)

Proof

The proof is immediate upon realizing that the con-
trolled learning error satisfies the following differential
equation with discontinuous right hand side

é(t) = ~W sign e(t) (2.25)
and hence a sliding regime exists on e(t) = 0, since
e(t)é(t) = —Wle(t)] < 0 for all nonzero e(t). The
sliding regime is reachable in finite time t; given by
le(0)]/W, as it can be inferred from the explicity solu-
tion of (2.25).

3 An Illustrative Simulation Example

Consider a dynamic adaline consisting of three first or-
der, linear, time-varying systems acting as adjustable



weights through their time-varying parameters. Sup-
pose, furthermore, that the input signals z;, z, and
z3 to the adaline are known constants. 1t is desired to
track the scalar signal

ya(t) = Asinwt cos 2wt

with A = 0.4, w = 10 [rad/s], by means of the output,
y(t) = y1(t) + y2(t) + ya(t), of the adaline, specified by
the sum of the states y;,y2,ys of the three independent
linear systems constituting the dynamical adaline. The
adaptive algorithm used to adjust the “gains” and the
‘time constants” was not fed with any information re-
garding the time derivative of the signal yu(t). Figure 4
depicts the computer simulation results for this exam-
ple. The state components of the adaline are seen to
be bounded signals as well as the adaptation parame-
ters constituting the three dimensional vectors a(t) and
"K(t). The tracking error e(t) is seen to rapidly con-
verge to zero in spite of lack of knowledge of y4(t). In
order to smooth out the natural chattering generated
by the discontinuity present in the “sign” function, we
substituted such a function, as it is customarily done,
in sliding mode control practise by the approximating
function
e(t)
le(t)] + €

with ¢ taken to be a small constant of value ¢ = 0.01

4 Conclusions

In this article, a sliding mode feedback adaptative
learning algorithm has been proposed for a special class
of adalines with first order, linear, time-varying, dy-
namical systems acting as adjustable “weights”. The
sliding mode strategy was used here in the context of an
output signal tracking problem, but it can be equally
utilized in more complex tasks, such as direct and in-
verse dynamics identification, commonly used in auto-
matic control applications of perceptron-based neural
networks. As in the traditional analog adaline case,
the sliding mode learning algorithm robustly drives the
learning error to zero in finite time. The approach is
also highly insensitive to bounded external perturba-
tion inputs and measurement noises. The assumptions
made about the bounded nature of external input sig-
nals and desired outputs, as well as of their time deriva-
tives, are quite standard in relation to adaptive neuron
elements, but they restrict the considerations to mem-
oryless activation functions of the differentiable type.

Extensions of the results to more general classes of mul-
tilayer dynamical neuron arrangements is being pur-
sued at the present time, with highly encouraging re-
sults.
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Figure 3: Dynamical Adaline

Figure 4: Simulation results for the example
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