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Abstract

Through a process of “feedback passivitization”, a large
class of nonlinear monovariable systems may benefit
from systematic controller design techniques available
for passive systems. An illustrative design example
from the continuously stirred tank reactor control area
is presented which include computer simulations.
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1 Introduction

Passivity-based controllers have been traditionally ap-
plied to the class of lagrangian systems [3]. In particu-
lar, the approach has been applied to mechanical sys-
tems (such as robots (4], etc.), electro-mechanical sys-
tems (such as induction motors) and to purely electri-
cal systems (such as de-to-dc power converters [5]). We
show that nonlinear systems such as those describing
chemical, biological and level control processes, may
benefit from a systematic feedback controller design
procedure already available for nonlinear passive sys-
tems. As a first step, it is shown that a large class
of nonlinear systems with nonzero constant equilibrium
states, are “passivifiable” by means of a suitable state-
dependent input coordinate transformation. The cru-
cial requirement for passivization through feedback is
that the system must have a storage function which is
locally strict relative degree one in a region containing
the equilibrium state. Although this result is indepen-
dent of the minimum or nonminimum phase character
of the system, and, also, independent of the output rel-
ative degree, passivization of nonminimum phase sys-
tems will result in an unfeaseable growth of the state
coordinate transformation when the system motions
are sustained at the required equilibrium point. Hence,
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in connection with stabilizing designs, our technique
should only be applied to minimum phase systems.

In this article, the geometric features of passivization
are studied in connection with the system’s defining
vector fields and their relation to a family of smooth
manifolds representing constant values of the storage
function. A decomposition of the system’s drift vec-
tor field is proposed. We show that the “passivify-
ing” input coordinate transformation renders lossless
(i.e., invariant), with respect to the storage function,
the nondissipative component of such a drift vector
field. The proposed decomposition is in a loose sense
“canonical” and it is intimately related to the tradi-
tional passivity-based feedback regulation design, car-
ried out through energy storage function modification
and feedback damping injection possibilities [3].

In Section 2 we review some concepts about dissipa-
tive, lossless and passive systems. We also present
in this section a feedback passivization technique and
the geometric aspects of the proposed feedback pas-
sivization scheme. Section 3 presents a general state
space “canonical form” for passive nonlinear systems.
This section also revisits the “energy modification plus
damping injection” controller design methodology in
light of the proposed passivity canonical form. Section
4 is devoted to show an application of this technique in
the chemical control systems area. Section 5 contains
the conclusions and suggestions for futher research in
this field.

2 A geometric Approach to Passivity-Based
Regulation

We consider affine nonlinear systems described by
i = f(x)+g9(@)u
v = hi) 1

where 2 € X C R" is the state vector,u € U CR is
the control input and the scalar functiony € Y C Ris



the output function of the system. The region X C R™
is the operating region of the system. The supply rate
function is defined as a function s: U x Y — R.

Assumptions 2.1

-. The vector fields f (z) and g (z) are smooth vector
fields on X.

- There exists an isolated nonzero state of interest,
z =z, € X, where f (z.)+g(z.) i = 0, for some
nonzero constant 4.

- There ezists an energy storage function, V : X —
Rt which may be zero outside of X (at the origin,
for instance), associated with system (1).

2.1 Review of passive systems theory

We review some of the basic definitions about dissipa-
tive, lossless and passive systems. The reader is re-
ferred to [1], [8] and [9] for additional details.

Definition 2.2 [8] System (1) is said to be dissipative
with respect to the supply rate a(u,y) if there exists a
storage function V : X and for allt; > to, and all input
functions u, the following relation holds

t

V(z(th)) - V(z(to) < / L),y (2)

to

with z(to) = 2o and z(t1) is the state resulting, at time
t1, from the solution of system (1) taking as initial con-
dition zo and as control input the function u(t). IfV
is differentiable with respect to time t for allz € X and
u € U, then the inequality (2) is equivalent to ([9]):

V < s(u(t), y(t)) ®3)

The system s lossless §f the snegualities (2), or (8),
are, in fact, equalities.

Definition 2.3 [8] System (1) is passive if it is dis-
sipative with respect to the supply rate s(u,y) = uy.
The system is strictly input passive if there ezists
6 > 0 such that the system is dissipative with respect
to 8(u,y) = uy — 6u?. The system is strictly output
passive if there ezist an v > O such that the system is
dissipative with respect to s(u,y) = uy — yy>.

The following definition and result constitute a gen-
eralization of the classical Kalman-Yakubovich-Popov
property and of its associated lemma, for positive real
linear systems [1].

Definition 2.4 A system (1) has the Kalman-
Yakubovich-Popov (KYP) property if there exists a con-
tinuously differentiable nonnegative function V : X —
R, with V(0) == 0, such that

LyV(z) <0
L,V(z) = h(z)

forallz e X.

The following result follows directly from the definition
of passivity and the fact that V(z) is a relative degree
one function of the system.

Proposition 2.5 [1] A system which has the KYP
property is passive with storage function V. Conversely
a passive system having a continuously differentiable
storage function has the KYP property.

2.2 Feedback Passivization
We are going to consider systems in which the drift
vector field f(z) has a natural decomposition.

Definition 2.8 The drift vector field f (z) of (1) has
6 natural decomposition with respect to the storage
function V, whenever f(z) can be expressed as the sum
of three components

f(z) = fa(z) + fna(z) + fr(z)
such that,

LyV(z) <0 ; Vz X

is, either sign — undefined in X
L.,V (2) { or, else, it is nonnegative in X
LyV(z) =0 ; Vz €X

where fyg(x) s the dissipative component of f(z),
fna(z) s the non-dissipative component of f(z) and
f1(z) is the invariant component of f(z).

We shall be considering means of rendering a system
of the form (1) passive, or at least “lossless”, by means
of state feedback. We therefore introduce a definition
of “passivifiable” system in the following terms:

Definition 2.7 System (1) is said to be “passivifi-
able” with respect to the storage function V if there
ezists a regular affine feedback law of the form

u=a(z)+B(z)v; az) €R; fz)eR (49

where B(z) 1s @ nonzero scalar function in X, and such
that the closed loop system (1)-(4) becomes passive with
new scalar control input v.
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The following proposition presents the feedback pas-
sivization technique:

Proposition 2.8 System (1) is locally strictly output
passivifiable with respect to the storage function V, by
means of affine feedback of the form (4) if and only if

LV(z)#0Vze X

The affine feedback law, or state dependent input coor-
dinate transformation, that achieves strict oulput pas-
sivization s given by the expression

h(z) = LpV(z) K (7)

Ive Iy ®

YTV

where v is an arbstrary strictly positive scalar.

The resulting closed loop system given by (1)-(5) satis-
fies the KYP property as it may be easily verified. The
proof of this result is given in [6].

2.3 A Geometric Interpretation of Passivization
by Feedback

Suppose a system of the form (1), with a natural de-
composition of f(z), is passivifiable, i.e., L,V (z) #
0V z € X with control input (5). The closed loop
system (1)-(5) is given by

b= 1)+ 110 + |1 o) P o)
2
+ppalel =1 (o) ©

The first summand is, according to its definition, a nat-
urally dissipative term. The second and third sum-
mands are the workless terms or invariant terms, the
fourth summand is the power adquisition term respon-
sible for the “supply rate” in terms of the new con-
trol input and, finally, the fiftth summand is an artifi-
cially induced dissipation term making use of nonlinear
(quadratic) output feedback.

The geometric interpretation of the several components
in the transformed equation (6) is shown in Fig. 1.
Note that the matrix

M@ = [1- 00 T |

is a projection operator onto the tangent space to the
level surface V(z) = constant, along the distribution
span {g}. This projection operator “hides” all desta-
bilizing components of fp4(z) by making the vector
M(z)faa(z) tangent to the level surfaces of constant
stored energy, i.e., to the family of sets (or foliation)
{ z 8t. V(x) = constant }. Thus, any unstable be-
haviour contained in fp4(z) does not increment, nor
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Figure 1: A geometric interpretation of passivization.

diminishes, the value of the energy function V(z) along
the controlled trajectories of the transformed system.
However, it should be made clear that passivization of
non-minimum phase systems would be achieved at the
expense of possibly unbounded (i.e., unfeasible) feed-
back control actions. The reguirement of a minimum
phase system for passivization is, hence, natural and
convenient.

It is easy to verify that M(z) satisfies the following
properties which are characteristic of projection oper-
ators onto tangent spaces, along the span of a given
vector g :

M(z)g(z) =0 Vz e X
YMz)=0VzeX

M (z)=M(z) Vze€X

3 Passivity-Based Feedback Controller Design

We review a systematic procedure for the synthesis of
passivity based feedback controllers. This procedure,
based on storage function modification and damping
injection through feedback, has been extensively used
in the area of mechanical, electromechanical and elec-
tric systems. The reader may find further details in [5]
and in the references therein.

3.1 A Canonical Form for Passive Systems
Suppose that system (1) is passivifiable and f(z) has
a natural decomposition. Suppose, furthermore, that
V(z) is given in its simplest form

V(iz)= ;—sz
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Assuming that L,V (z) = 27g(z) # 0 in the operating
region X of the state space. The expression (6) may
always be rewritten in the following form

t = -R(z)z-J(z)z+ M(z)
y = hz) M
where,
fie) =1 hgla) = ~Rio)e
@)+ [1- 0@ s | fale) = -(0re
h
x—'[‘g(_x)g(z) = M(z)

with R{z) being a positive semidefinite matrix in X,
and J(z) being an anti-symmetric matrix.

3.2 Feedback Controller Design via Energy
Modification and Damping Injection
Consider the following modified storage function

Vi(z,24) = %(z‘ ~z4)T(z ~ z4)

where 24 is an auxiliary state vector to be defined later.
Along the solutions of the system (7), the function
Va(z, z4) exhibits the following time derivative

Va(z,24) = (2-24)" [-R(z)z — T (2)z + M(z)v — 4]

Adding a damping injection term of the form

—Rai(z)z, so that Ry, (2) = R(z)+Rai(z) is a positive

definite matrix for all z € X, one obtains

Va(z,za) = (z-22)7 [~ (R(2) + Rai(2)) (z - 2a)
-J(z)(z — z4) — 4 — R(2)24
—J(z)zq + Rai(z)(z — 24) + M(z)v]

Letting the auxiliary vector z4(t) satisfies the following
system of differential equations

£4 = ~R(2)2a— T (2)2a+Rai(z)(z—24) + M(z)v (8)

then it results

Va(z, za) —(z - )R (z)(z — 74)

—%(z —z)T(z—24) < O

IA

where, in terms of the minimum and maximum eigen-
values (Amin, Amax) Of Rin(2), @ and b are given by,

infxe;( /\min(Rm(x)) >0
SUP,ex Amax(Rm(x)) >0

a
b

i

1t follows that the vector z(t) exponentially asymptot-
ically converges towards the auxiliary vector trajectory
z4(t). Typically, one sets for a particular component

of the vector z4 a desired constant equilibrium value.
This is made in correspondance with the component
value in the equilibrium state z. of the original state
vector. The objective of such a particularization is to
obtain a feedback expression for the external control in-
put v in terms of the available state vector z, as well as
the rest of the auxiliary variables in the vector z4. The
differential equations defining the remaining auxiliary
variables in z4, are to be regarded as state components
of a dynamical feedback compensator [5].

4 Example

Consider the following process model that describes
a first-order reversible reaction A +— B that occurs
in a constant-volume continuously stirred tank reactor
(CSTR), taken from [2], shown in Figure 2.

& = fg‘ (Cai — 21) — k1 (23) 21 + k2 (23) 22

T = %(CB:' —32) + ki (33)31 ~ k2 (33)1:2

) -AH

i3 = ]_qf(" —-23) + ( pCp ) (k1 (z3) 21 — k3 (23) 2]
Yy = T2 (9)

with

ki (25) = C; exp (’Ei—s) =12

The variable z; is the efAluent concentration of A4, z; is
the effluent concentration of B, z3 is the reactor tem-
perature, u i8 the input variable and it represents the
inlet temperature. Cy4; is the inlet concentration of A,
Cp; is the inlet concentration of B, q is the inlet flow
rate, V is the reactor volume, C) is the preexponential
factor for forward reaction, C, is the preexponential
factor for reverse reaction, E,; is the activation energy
for forward reaction, F; is the activation energy for re-
verse reaction, —AH is the heat of reaction, p is the
density, C, is the heat capacity, R is the gas constant.

-/

A+—B

Cai, Cbi, Ti

b

il,x2, 13
————»

Figure 2: Continuously Stirred Tank Reactor System.

The system output has relative degree equals to two
and the operating region (9) is given by points strictly
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located in the first orthant of R3, where the concentra-
tions and the temperatures are all positive. In other
words,

X= {:c: (:cl,:cg,.’lfs)T €R® st.z;>0;i= 1,2,3}

The vector fields f(z) and g(z) are readily found to be

¥ (Cai = 21) — k1 (z3) 71 + k2 (23) 72
flz) = [ ¥ (Cgi — 1) + ki (23) 1 — kg (23) 22 ]
—'4'1?3 + L—l [kl (1:3) 1 — ko (23) xz]
0
g(z) = [ 0 }
v

Consider the following energy storage function,

V== (1:1 + 22 + z3)

The condition, L,V # 0, results, in this case, in
LV =3z #0
J \4
which is satisfied over the operating region X'.

The system is, then, clearly passivifiable with storage
function V (z). The time derivative of V along the
regulated evolution of the system satisfies the following
inequality,

V <

% (Caiz + Cpiza + uxs) + k1 (z3) 21
X (422 + (Eiy)

pCyp
The decomposition of f(z) in X into dissipative and
non-dissipative components is clearly given by

E‘Q; + Kk (-’53);

|: & + ko (z3)
ARk, (23) 22

[ FCai+ ks (zs)xz l

~$s -

vChi + ki (z3) 21
_(11._). ki (z3) 71

Define the following state-dependent input coordinate

transformation,

a:3) + kg (z3) 2122 (10)

n
T2

- falz)

tl

.fnd (z)

it

u = Vi‘s [320 - %(CAizl = Cgizs) — k1 (23) 1
-AH
—ka(z3)x2)T122 — ( )’kl (®3)2125
PCp

—vz3] (1)

where v is an arbitrary strictly positive scalar.
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Transformation (11) results in a passive system oper-
ator relating the new input v and the output variable
Za.

The partially closed loop system may be placed in the
form (7):

-J@)z-R(z)z+ M(z)v

where 27 = [z, 22 z3] and
0 0 Jis3
—J (Z) = 0 0 ._723
-Ni3s -Js O
~R(z) = diag {~ (§ + ka(23)),— (¥ + ka(a3)) ,
~CoMk, (25) 22 - § — 1)
0
M@ = | ©
-
where
1
Fo = (§Cu+kalea)ea) -
Jos = (‘%‘CB:‘ + Kk (za)zl) '3:1‘3

A dynamical passivity-based feedback controller for the
system may be obtained by using the synthesis proce-
dure outlined in Section 3.1.

Letting z34 = %3 = constant, one obtains the follow-
ing dynamical controller expression, where z;4 and z24
have been substituted by the controller state variable
& and &, respectively.

b = v (CAs— = 51) — ki (z3)e1+ ko (1‘3)1:2%
+R1 (.’tl fl)

b = L(omZ-6)+h) ”—f ks (as)s
+R2 (:tz - &)

v = =— (CAafl +Cpik2) + k1 (zs) 2+ ks (23)

z A

xé; +’Yx;:3 + %253 + Li)a;_kz (213)573
Ry (23— £3) =2

We take, after [2], the following system parameters for
the simulation of the controlled stirred-tank reactor:

=1L/s, Cai =1 mol/L, Cp; = 0 mol/L, V = 60
L,C,=5x103s8"1,C,=1x10°s"1, E; =1 x 10*
cal/mol, E; = 1.5x10% cal/mol, —AH = 5000 cal/mol,
p = 1kg/L, Cp = 1000 cal/kg-K, R = 1.987 cal/mol-K.



The required equilibrium point for z3 was set to be
Z3 = 394.4 K, this corresponds with the steady state
values: Z; = 0.6 mol/K, Z = 0.4 mol/K and & = 392.4
K.

Figure 3 shows the closed loop response of the stirred-
tank reactor system, controller state and the synthe-
sized control input.

effiuent concenlration of A, x1 effluent concentration of B, x2

07

@
065 045,
o 1d ] \
E os|” B 04 —_—
€
x2d
055 0.35|
x1 0%
0% 300 o 100 200 300
ime (8) time (8)
reacior lemperature, x3 Control input, u
295 46
34 R0
33
x X 420)
392
301 400
- 380
o 300 o 100 300
time {s) time (8)

Figure 3: Simulations results of the passivity-based reg-
ulated CSTR system.

5 Conclusions

In this article, we have proposed a passivity-based ap-
proach for the regulation of a large class of continuous
processes, specially chemical systems control processes.
A geometric interpretation was given to the possibilities
of “passivifying”, by means of afine feedback, an arbi-
trary nonlinear system describing a continuous process.
For monovariable systems, passivization is achievable
by means of control input space coordinates transfor-
mations, provided the energy storage function of the
system is strictly relative degree one in the region of
interest. This requirement does not seem to be very
stringent, for a large class of nonlinear monovariable
systems describing common industrial continuous pro-
cesses.

The use of these general energy concepts, in the
passivity-based regulation scheme presented, may
prove to be highly beneficial in the control of chemi-
cal processes. The results here proposed apply to any
linear, or nonlinear system, independently of its out-
put relative degree and of its minimum or nonmini-
mum phase character. Of course, in the case of non-
minimum phase systems, any stabilizing controller will
result in unfeasible control actions, whether unstable
or unbounded, as the desired equilibrium state is sus-
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tained. In general terms, the possibilities of “passiviza-
tion” of nonlinear systems by means of regular affine
feedback have been shown to be equally valid for mono-
variable and multivariable cases [7].

Passivity-based regulation, as presented here, can be
easily compared against exact linearization techniques
in terms of the controller complexity and other practi-
cally oriented criteria.
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