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ABSTRACT

This work shows a first approximation of the use of bond
graphs to dctermine flatness and passivity properties of
physical systems. In the case of the flatness property,
the topology of the bond graph was used directly in or-
dcr to obtain paths in the bond graph which gencrated the
equations of the linearized outputs. In the case of the pas-
sivity property, we tried to use the topology of the graph
directly but not being successful, the scattering matrix of
the system was used as an intermediate step.

f/ 1. INTRODUCTION

The main goal of control theory is to study the behavior
of systems and their interaction with their environment.
This study is dondc using diverse techniqucs that deal
with different issues of this interaction. Two important
issucs in the behavior of a system are its controllability
and its stability. These two issues are closely related
to properties that atlow to detect them indirectly: flatness
and passivity. These properties can also be used to dcsign
control strategies straightforwardly.

A bond graph is a graphic description that allows the
modeling of dynamic physical systems. The method
which gencrates a bond graph is based on the separa-
tion of components that exchange energy through con-
nections called ports. The encrgy exchange is studied us-
ing to types of general variables: power variables (effort
and flow) and encrgy variables (momentum an displace-
ment). Power variables are related to the energy variables
through integral relations.

Bond graphs have demonstrated to be very useful, not

only for being a graphic description that permits to model
dynamic physical systems properly, but also for being a
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tool that allows to analyze systems from a structural point
of view [6], [23], [25], [28], [29], [30], [36] and generate
the symbolic equations [5}, [7], {15}, [18]. Considcring
these two characteristics, it was thought that bond graphs
could be adequate to dctermine the passivity and flatness
of physical systems.

This paper is organized as follows. In section 2. the
concept of flatness is explained and the methodology used
in the search of the flatness property from a bond graph is
shown. Section 3. describes the concept of passivity and
its dctermination using the scattering matrix generated
from a bond graph. Section 4. shows an examplc where
flatness and passivity arc determined for the same system.
The conclusions of the work are shown in section 5..

2.  FLATNESS

One way of analyzing physical systems is through the
use of differential algebra [4), {26]. [31]. This approach
has permitted to establish the relationship between flat
and controllable systems. The relation is based on the
works about strong accesibility presented by Sussman and
Jurdjevic [31] for dynamics of the form £ = f(z,u),
the proof made by Sontag [26] about the existence of
control laws for strongly accessiblc systems and on the
proofs by Coron [4] and Sontag {27} which show that
such controllcrs are generic.  Applying these concepts,
Flicss et al. [9] introduced the concept of flat systcms
and showed that thcy are controllable by means of state
variable fecdback.

In spite of the existence of several methods to determine
whether a system is controllable or not, thcse can not
be applicd to non-lincar systems. Flatness gives us an
answer to this particular problem, since a flat system is
controllable whether it is linear or not. Besidcs, when



flatness is determined, we obtain explicitly the possible
control laws using state variable fecdback.

Flat systems are equivalent to lincar systems by means of
a special type of fecdback called endogenous, [9]. This
type of fecdback receives its name because it does not
depend on exogenous variables, which are independent
of the original variables of the system and its deriva-
tives.New variables are made up, y, that can be secn
as a fictitious outputs, called linearizing outputs or flat
outputs. There can be more than onc combination of vari-
ables that satisfy flatncss conditions, since the lincarizing
output is not unique. Isidori [13] shows the nccessary
and sufficient conditions for certain non-lincar systems
to be lincarizable by means of state variable fecdback.

Although flatncss is not a generic property, many sys-
tems found in the engincering field are flat. Furthermore,
the lincarizing output usually has a well defined physical
meaning [16].

Definition 2.1 [9] A non-linear multivariable system of
the form: ’

@ = f(z,u) reR? uec R”,

O

where « is the state vector and wu is the output vector
is differentially flat if there are m scalar functions dif-
Serentially independent (linearizing or flat outputs) that
depend on x, w and a finite number o of its time deriva-
tives,

yj=hj(:t,u,'&,...,u°),

@

such that the -inverse of the system (1) with w as input
and y = (yy,...,ym) as output, is independent of the
state. This is equivalent to say that each variable of the
system can be expressed as a differential function of the
linearizing output y:

= n(v9...,v"*")

¢(yxy:--'vyﬂ)

i=1...,m

3)
C))

i

At the present tink, there is no effective method to de-
termine the flatness of a system. Instead, the different
variables of the system (1), or a function that depends
on them, are checked to verify if they can be written in
a way that satisfies the conditions imposed bc equations
(3) and (4).

This procedure does not always offer concrete results,
since the writing of equations (3) and (4) is unknown
and depends on the functions that describe the system.
Even for lincar systems it is difficult to obtain these equa-
tions, and the vse of computer programs capable of sym-
bolic calculation is nceded. These difficulties made us
think about using a graphical description such as thc bond
graph to determine if a system is flat.
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Flatness from a Bond Graph

The methodology we developed was based on the bond
graph’s property to generate equations whenever certain
paths in the graph are followed [5]. Since flatness in-
volves thc necessity to express a given variable as a func-
tion of on boldmathz, boldmathz and a finite number o
of its time derivatives, a path in the graph betwecn the
given initial variable and the candidate to linearizing out-
put was sought.

Onc of the main ideas of the methodology developed is
that the variables involved in the equation of the lineariz-
ing output are obtained using causal paths [2]. Two sets
of variables were dcfined: the former (input vector S)
groups the inputs of the system (the sources) and the
state variables (displacements and momentum) and the
tatter (output vector L) groups the candidate variables to
be linearizing or flat outputs. The causal paths between
all the variables of the first set and a subset of the second
set are sought. Lastly, the bond graph is run following
the causal paths and the equations obtained are studied to
determine whether the required conditions for the system
to be flat are met. The methodology deals easily with
simple systems whereas those that contain resistive ficlds
introduce additional calculation problems. Energy storing
ficlds do not pose this inconvenience since they contain
starting or arriving points of the causal paths.

Onc of the advantages of the methodology developed is
its recurrence, which permits to try all the possible alter-
natives when we analyze the variables that could be lin-
earizing outputs. However, the methodology only works
for those sysiems whose lincarizing outputs are state vari-
ables. Furthermore, the non-linearities of the bond graph
elements must be invertible, so that the relations between
flow and effort and vice versa can be obtained explicitly.
If this condition is not met, it would not be possiblc to
obtain the flatncss equations explicitly. For this reason,
it is required that the constitutive equations of the ficlds
can be written both in cavsal derivative form and causal
integral form. For the moment, thc methodology has onl

been applied to SISO systens. .

The proposed methodology can not be applied when the
linearizing output is a function that depends on two or
more variables. Even though the algorithm was developed
for linear and non-lincar scalar systems, a formal proof of
the conditions that non-lincar scalar systems must satisfy
in order to apply the mcthod effectively has not been
found yet. A detailed description of thc methodology can
be found in [19]

3. PASSIVITY

One of the most interesting concepts in control theory
is passivity [8] [32] [33]. Initially, this concept appcars



in the context of electric networks where great cfforts
were made to give an exact definition of its mcaning and
its consequences in terms of timc and encrgy [24]. In
control theory context, it appears through Popov’s works
[21] [22], and its dcvelopment can be secn through dif-
ferent works [3] [8] [12] [17] [32] [33] [34] [35]. The
importance of passivity is expressed by two of its main
characteristics: passive systems are stablc and the inter-
conncction of passive systems is passive.

Basically, the definition of passivity establishcs that a
system is passive if the energy, supplied to the system
plus the encrgy previously stored is greater than the final
encrgy stored in the system. This means that some energy
has been dissipated. In the following, the concept of
passivity will be presented from an intuitive point of view,
based on the energctic relations betwecn systems. This
concept is closely related to electric network theory.

The dcfinitions given by Wyatt et al. [33] will be
used, they deal with finite dimension time invariant sys-
tems describcd by their state equations. The inputs are
applied and the outputs observed in the time interval
®* = [0,00), and the “initial state” means the state in
t == 0. The voltages and currents will be referred as
efforts e, and flows f, in order to gencralize, and they
will always have reference directions associated, so that
instantancous power going into the n-port is:

K.

Y et} fi(t) =< eft), £(1) >

i=1

5)
Generally, an n-port is represented by a state equation
and two maps that give effort and flow of the ports as

function of the input and the state variable, with a group
of rules defining the class of inputs that can be applied.

Definition 3.1 The power input function P : L. xU — R
is defined by:

plz, u) =< e(x, u), f(z,u) >

©)
where x is the state vector and u is the input vector.

Definition 3.2 A selection of input and output variables
u and y for an n-port is called a hybrid pair if u
and y are n-dimensional and for each K € {1,...,n},
ug = ey and yr = fi or ux = fr and yi. = ey, where
uy == ex and yy = f denote the k — th component of
u and y respectively, and ey and fi. denote the k — th
effort and flow port, respectively.

Definition 3.3 Given an n-port N with state represen-
tation S, the available energy E 5 : © — R U {+o0} is
defined by

T
EAEsup{/ s<e(t),f(t)>dt} vT >0
-t 0
4]
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where the notation sup,_, means that the supreme is
taken for all admissible pair {e(-), f(:)} and T > 0
with the initial state x fixed.

Since we are supposing that t —< e(-), f(-) > is locally
L1, the integral (7) always exists and is finite [33]. This
means that the available encrgy in a particular state x
is the maximum encrgy that can be extracted from the
system when its initial state is .

Definition 3.4 an n-port N with state representation S
is passive, if for every x that belongs to the space state
S, Ea(z) < +00. If this is not satisfied, N is active.

As can be scen in the previous definitions, passivity is
defined in terms of a bounding condition of its available
energy (Definition 3.3). Analogously, it can bc said that
a system is passive if thc amount of encrgy that can be
supplied through its ports is a finite quantity (Definition
3.4). This mcans that if thc available encrgy function of
a system is dctermined, then it is possible to study its
passivity. ‘

The determination of passivity using the available energy
function can result in a complex process disregarding the
case studied. For this reason an alternate way was thought
that allows to dctermine passivity using a bond graph.

Passivity from a Bond Graph

As in the case of flatness, we tried to use the topology
of the bond graph to detect the passivity of a system. It
was found that it is not possible to determinc the passiv-
ity by only studying the graph’s topology, the elements
description must be included. This is due to the fact that
passivity is a property that depends on the input and out-
put of the system, so it is nccessary to consider both de-
scriptions. Even though the bond graph contains all this
information, a direct path could not be found to reach the
proposed goal.

Based on this previous result, alternative ways were ex-
plored to reach the main objective. This lead us to the
selection of the scattering matrix [3] as an intermediate
step between the bond graph and the determination of the
passivity. The reason for this choice is that the scatter-
ing matrix describes in onc picce of information both the
elements and its interconnection.

In the following, the }elationship between passivity and
the scattering formalism will be presented. For this, we
consider a n-port where the average power P; that gocs
into the port j is describcd by the expression {11]:

®)

Py = |wyj|? — Jw,|?



where w;; and w,; are the incident and reflected wave
varables respectively [20]. Then, the average power ab-
sotbed by the n-port is:
"‘"

>pe
j=1
where W; and W, are the incident and reflected wave
matrix respectibly.

n
3 fwisl? = lwn 2 = WW - W, W, (9)
i=r

It is known that:
W, = SW;
where S is the scattéring matrix.

(10

Relation 10 is substituted in equation (9), to obtain:

n
S opi=wit(-sts)w;
=1
where I is the identity n 2 n matrix and the superindex
* denotes thc complex conjugated transpose matrix.

an

Theorem 3.1 Let S be the dispersion matrix of a n-port
N. The n-port N is passive, if and only if:

I-8*S>0 12)

where 0 is a n x n null matrix. Furthermore, if the dis-
persion matrix is unitary, i.e:

sts=1 (13)

then the n-port N is lossless.

Together with the previous result, we found that Kamel
and Dauphin-Tanguy {14] and Amara and Scavarda [1}
developed different methods to obtain the scattéring ma-
trix from the bond graph model. We choose Kamel and
Dauphin-Tanguy’s mcthod because of its simplicity, it is
‘base on identification of series and parallel structures (0
and 1 junctions with their related R,C, and I elemcnts
associated) and finally, wave matrices [20] are used to
obtain the final scattering matrix of the interconnected
structures.

The methoology we propose is applicable only to lincar
systems, since it is based on the study of the scattering
matrix and can only bc used to study the passive relation-
ships between the effort and flow variables defined in the
each of the ports of the n-port . A detailed description
od the method can be found in [10]

4. EXAMPLES

The following two examples will show how the flatness
and passivity of a system is determined from a bond
graph. The system is shown in figure 1 and its corre-
sponding bond graph is shown in figure 2. The numerical
values of the paramcters are the following: R, = % Q,
Rs=3QandIy= § H.
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Figure 1: RL Circuit
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Figure 2: Bond Graph of RL Circuit

Flatness
In this case, the input vector S is defined as S = [e), p4,
whereas the output vector L is defined as L = [py]. -

Variable p4, the only candidate to bc flat output, is
checked to see if it is the real flat output. We want to sec
if the variables of the input vector S (¢, and p4 can be
expressed as a function of p,. starting with ¢,, a causal
path is found between ¢, and py, 1-3-4. Following this
path, and using the relations of the elements found, we
obtain the following equations:

el = eg+te3 (14)

€1 = Rafaotey 15)

€1 = Rafs3+ps (16)

er = Ro(fa+ fs)+ps %))
R R

€] = (—1‘4'2') pat (Ei) €5+ Py (18)
R R .

el = (T}) pat (-Iﬁ) €4 + py 19)

_ (R Ra\ . '
e = (14)P4+ (1+ Rs)m (20)

We sec that e, is already expressed as a function of py
and its first derivative.

The last variable of the input vector (p,) is tested:

Pe = P4 @D

In this particular case. the procedure ends in the first stcp
because the starting variable of the path is the candidate
to flat output. Equations (20) and (21) show all the el-
emenis of vector $ as a function of variable p; and its
first derivative. Then. p, is the linearizing output of this
system.



Passivity

The study of passivity of the system shown in figure 1
will be done through the input port, bond number 1. In
this case we will determine if the system is passive with
respect to the encrgy supplied through the effort source.
Applying the chosen method [14], we obtain the follow-

ing scatlering parameter:

o3 (22)

S(s) = ;

ls
22s

As our system only has one port, the condition of passiv-
ity is reduced to verify that the module of the scattering
parameter is bounded by unity for all frequency w:

11 N ar.g

o = o mm 2 g 2

ISGu)l = /312 5 g VW2~ 9! +81w?  (23)

It can be determined that this module is always less than
unity, so this system is passive. We could verify this
. Tesult through the study of the real positiveness of the
impedance function of the system [3]. This function is:

24)

and it can be seen clearly that it is real positive.

5. CONCLUSION

This work shows the use of the bond graph to determine
the controllability and the stability of a system through
the properties of flatness and passivity respectively.

In the case of flatness, the graph was successfully used
to determine this propriety. Causal paths between the
flat variable and the state and input variables generate
equations that express the latter as a function of the former
and a finite number of its time derivatives.

Inthe case of passivity, the difficulty to find a straight way
to determine it from the bond graph’s topology obliged

us to find an alternative through the use of the scatter- -

ing matrix. Even though this is not a direct method, it
provides a tool to reach the proposed goal.

The methods developed can be coded in a programming
language.
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