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Abstract

In this artilce we propose an output feedback control
scheme for the robust stabilization, through sliding mode
creation, of nonlinear discrete-time systems described in
Fliess’ Generalized Observability Canonical Form. The re-
sults are applied to the regulation of a discretized model
of a nonlinear DC motor.

1 Introduction

Sliding regimes in continuous-time systems have been the
object of intensive investigations. A complete account and
update of the theory can be found in specialized books
published over the years by authors like Utkin, [1], Zi-
nober [2], and many others. Special issues of journals such
as the International Journal of Control, the IEEE Trans-
actions on Industrial Electronics as well as Electrotehniski
Vestnik and Pure and Applied Mathematics(PUMA), have
also appeared in recent times, with state of the art con-
tributions and numerous references.

For discrete-time systems, sliding motions were first
studied in the work of Miloslavjevic in [3] in the context of
sampled data linear systems. Later on Sarpturk et al [4]
devoted studies for various classes of discrete-time linear
systems. An interesting contribution with useful genera-
lities is that of Drakunov and Utkin [5]. Contributions
to the saturated output feedback sliding mode control of
linear systems were also given by Magafia and Zak in [6].
More recently, the problem has been treated by Furuta [7].
For nonlinear systems the article of Sira-Ramirez [8] crit-
ically evaluates the proposed definitions of quasi-sliding
motions. The output feedback regulation problem, by
means of sliding modes, has been treated by El Khaz-
ali and DeCarlo in [9] for the case of multivariable, linear,
time invariant systems. A recent book by Emelyanov et
al, [10], thoroughly deals with the sliding mode control of
discrete and digital systems.

In this article we propose an output feedback control
scheme for the robust stabilization of discrete-time nonli-
near sytems of general form. Our proposed scheme uses a
sliding mode control approach for the regulation of an aux-
iliary output function which induces a desirable asymptot-
ically stable linear closed loop dynamics on its zero level
set. The nonlinear systems are assumed to be placeable
in the discrete-time counterpart of Fliess’ Generalized Ob-
servability Canonical Form (see [11]) and utilizes a dynam-
ical observer for the estimation of the generalized phase
variables.

Section 2 contains the general results of the article
which closely follows the developments found, for the con-
tinuous time case, in Teel and Praly [12] and Isidori [13].
Section 3 applies the general results to the output feedback
regulation of a discretized nonlinear DC motor model.
Section 4 contains the conclusions and suggestions for fur-
ther research.

2 Output Feedback Sliding Mode
Control of Nonlinear Discrete-
Time Systems

In this section we propose an output feedback regula-
tion scheme for discrete-time nonlinear systems based
on sliding motions to the zero level set, of an auxiliary
output function comprised of “generalized phase” vari-
ables, reconstructed through a nonlinear observer with
predominantly linear reconstruction error dynamics. The
approach closely parallels, where possible, that already
found in Isidori [13] for the continuous time case. Con-
sider the system

z(k+1) = F(z(k),u(k)); (k) € R",u(k) € R,VEk
y(k) = h(z(k)) ; y(k)eR ¢y
Consider the following sequence of maps
Yo : R? — R
= o(z) )



and
Pr R" x R* — R"
(#,v0,01,-.-,%-1) = ¥i(z,v0,01,...,V-1)
1<k<n (3)

Defined in the following way

bo(z) = h(z)
¥1(z,v0) = h(F(z,v0))=:ho F(z,v)
¢j(zvv0>--~’vi—l) = hopj(t7v01v17""vj—1) (4)

These mappings evidently express the dependence of the
output y at time k + j op the state z(k) and the control
input sequence u(k),u(k +1),..., u(k+3—1).

Indeed, the previous definitions imply that,

y(k +5) = o (z(k), u(k), u(k +1),..., ulk+j—1)) (5)

Define a mapping & by stacking all the previous defined

maps from j =0ton —1
® : R'xR! — R"
(z,v) > w=2(,0) (6)
in which
v Yo(x)
v= v i B(x,v)= ¥1(z, vo)
Upn—-2 ¢n—l(zvvﬁx~--:vn—2)

By the previous construction, one evidently has
& : (z(k),uk),u(k+1),...,uk+n-2))—
(y(k), y(k+1),...,9(k +n - 1))

We assume that for some (z° %) € R® x R*~1

rank (%j) (£°,2%) =n

By virtue of the Implicit Function theorem, this assump-
tion implies that there exists a neighborhood U° of z°
in R, a neighborhood W?° x V° in R* x R*~! (where
w® = ®(z°,v°) ), and a unique mapping

®)

9

L 2N AR LY/
(w,v) ~z = ¥(w,v) (10)
such that
w = ®(¥(w,v),v) (11)

for all (w,v) € W x V°. 1t is then possible to conclude
that if at some time k%,

z° z(k°) and

v® = col (u(k®),u(k® +1),...,u(k® +n—2))(12)

are such that the rank condition (9) holds valid, then the
mapping ¥ can be used to compute z(k°).

2(k%) = W(w(k), v(k)) (13)

at time k°, with

w(k%) = col (y(k9),. .. y(k® 4+ n—1))

v(k°) = col (u(k?), ..., u(k® +n—2)

In order to be able to use the above mappings on any
sequence of sampling instants other than the instant k%,
one must impose a stronger hypothesis on the previous
“observability” condition of the system which is valid not
only for time k%, but for all times and states.

We say that the system (1) is uniformly observable if
the following conditions are satisfied

1. the mapping

H R* x R*! — R"
(:C,Uo,vl,.“,vn_g) —
col (h(z),h o F(z,v),...,ho F™=Y(z,v0,v1,--+,0n—2))
(14)
is a global diffeomorphism of the state space, for all
possible sequences, {vo, v1,...,vn_2} € UxXUX...X
u.
2. The rank condition:
0P
rank (5’:) (z,v)=n (15)

holds valid for each (z,v) € R* x R"™1.

If a system is uniformly observable, the mapping ¥ is glob-
ally defined.

Assuming the system is uniformly observable and con-
sidering the function ¥n(z, %o, ...,vn-1). Which, by con-
struction, is such that

y(k +n) = o (2(k), u(k),...,u(k +n~-1)) (16)

Using ¥(w, v), whose existence is attributed to the im-
plicit function theorem, we define the system

’u)()(k+ 1) = wl(k)
wi{k+1) wy(k)
w,,_g(k+ 1) = w,._l(k)
wn—l(k+ 1) = ¢ﬂ(\l’(w(k)vv(k))vv0(k)v"‘7vn—l(k))

(17)
It should be clear that if

'U,'(k) =
w; (0)

u(k+i) Vk>0 and 0<i <n-1
(i) (18)



then

wi(k) =y(k+i) Vk and 1<i<n-1 (19)
In other words, if the initial state and the inputs of (17)
are appropriately set, the various components of the state
of this system reproduce the output of (1) and its next
n — 1 values.

Consider the system (17) and let s(k) stand for the fol-
lowing auxiliary output, acting as a sliding surface coor-
dinate,

s(k) = apwo(k)+aywr (k) +.. + on_awn_z(k) + wn-1(k)

(20)
with coefficients properly chosen so that the polynomial
A lbag A"t (21)

has all its roots inside the unit disk of the complex plane.
If we impose on s(k), the dynamics

s(k+ 1) = ¢(s(k)) (22)
where the function ¢ is given by (see figure 1)
bsigns for |s|>a+r
((s)=1¢ (s—a) for a<|s|<a+r (23)
0 for |s|]<a

then, evidently, s(k) — 0, in a finite number of steps
depending only on the verification of the relation a+r > b
between a, r and b and irrespectively of the value of the
inital condition 2(0).

The controller that drives s(k) to zero is given by the
following implicit dynamics

P (¥(w,),v0(k), ..., va-1(k)) =
n—-1 n-2

¢ (E 05“&'(’“)) - Z o w1 (k) (24)
1=0 i=0

Under the assumption that 8, /8vn—1 # 0, and by
virtue of the implicit function theorem, a possible, locally
valid, ezplicit expression for v,_1, can be obtained from
the previous relation, as

Vn-1 = E(E(w(k), v(k)), vo(k), -, vn-2(k))

If we now let v; (k) = vj_1(k+1) for j = 0,...,n—1and
vo(k) = u(k) we obtain the following dynamical controller

vo(k+1) = wvi(k)
vi(k+1) = wva(k)
Vp_a(k+1) = wvn_a(k)
vp2(k+1) =
E(¥(w(k), v(k)), vo(k), v1(k), . ., va-2(k))
u(k) = vo(k) (25)

This controller, locally, asymptotically stabilizes the
system (1) when written in the form

vo(k+1) = wvi(k)
v(k+1) = wva(k)
Vpoa(k+1) = va_a2(k)
vn_g(k + l) =
E(z(k), vo(k), vi(k), . . ., vn-2(k))
u(k) = vo(k) (26)

This result, simply follows from the fact that the above
controller imposses a linear, reduced order, closed loop
dynamics on the generalized canonical form of the system
(17) with z = ¥(w, v). Indeed, it is easy to see that when
s(k) = 0 for all k, then the closed loop system is described
by

wo(k+1) = wi(k)
wi(k+1) = ws(k)
w,,_2(lc + 1) = —ao‘ll)o(k) - alwl(k) —

_an—an—2(k)
27

Of course, the above stabilization is possible, provided
the generalized phase variables are properly set (or pre-
dicted) at the values:

wi(k) =yk+1) Vk ; Vi

In order to guarantee that the states w of the system
are eventually appropriately set and thus avoiding unnec-
essary predictions of the output variable, other than those
arising from an initial state setting procedure, we propose
a dynamical nonlinear observer of the form

no(k + 1) m(k)
mk+1) n2(k)
: = |+
Mn—2(k + 1) "ﬂ—l(k)
nﬂ—l(k + 1) 0
[ 0
0
. +
| ¥ (E(n(k), w(k)), vo(k), .., vn_1(K))
[ Leaa
L%c,_4
-, (u(k) = mo(8)) (28)
Lty

in which |L] < 1is a constant to be determined and the
constant coefficients ¢, ¢1, .. ., Cn_1 are chosen so that the



polynomial
P = A"+ en 1A e dt e

has all its roots in the interior of the unit disk in the
complex plane.

One next defines the generalized phase variables esti-
mation error vector as

L™ (%o(z) — m0o)
e = L"—i'l(wi(z,vg,..
1<i<n-1

€ =
SUS) =)

(29)

Letting also & = col (#,vo,v1,...,0n_1), then the closed
loop system with & = ¥(n,v) is described by

B(k+1) = ¢1(0(k), e(k))
e(k+1) = LAe(k)+2(8(k)e(k)  (30)
with
—po1 1 - 0
—Cpp 0 - 0
A= 1o
—er 0 1
—p 0 - 0

1. If L is sufficiently small, all eigenvalues of the matrix

0¢a
LA+[3;hmm

are located inside the unit disk.
2. The function ¢2(8, €) is such that ¢,(8,0) = 0.

3. The function ¢1(0, e) is such that the equilibrium =
0 of
8(k + 1) = ¢1(6(k),0)

is globally asymptotically stable.

3 Applications to a DC Motor
Example

Consider the following simplified (singularly perturbed)
nonlinear model of a DC motor (see [13]),

i‘g = ——Iy+ & - KL’ T3u
L, L, L.R,
(i?3 = —E:L‘s + ﬂtzu
J JR,
y = I3 (31)

where the state variable z3 represents the motor shaft
angular velocity and z; is the rotor current. The control
variable u is the stator voltage.

A first order discretization of the above model (31) leads
to

xz(k + 1) = au:cg(k) + 01223(k)u(k) + a3
I3(k + 1) = 02123(k) + azzxz(k)’u(k)
y(k) = xa(k) (32)
where
an=(1+7h) ; az=71b3 ;
aiz=7by ; az =(1+7by) ; azz=7bs
with
_ B, Ve, _ KL ., _F
bl' Lr 3 bZ_Lr ) b3— LrR.q yb4_ Jv
KL
by = 2
*~ JR,

and 7 = 0.01s is the sampling interval.

In order to transform the system into the discrete-time
counterpart of Fliess’ Generalized Observability Canonical
form (see [11]), we take the following input dependent gen-
eralized phase error variables as states of the transformed
system

Yo(z(k)) = z3(k) — y" (k)
wl(:ﬂ(k), u(k)) = a21:c3(k') +
agaza(k)u(k) — y*(k+ 1)
The corresponding inverse transformation is given by

wy (k) — ag (wo(k) +y* (k) +y* (k+ 1)
azz’u(k’)

U}o(k)
wy (k)

(33)

Iz(k)
z3(k) = wo(k)+y"(k)
The transformed system then reads

wl(k)

(34)

UJQ(k + 1)
‘Ll)](k + 1)
2 (wo(k), w(k), u(k), u(k + 1),

vi(k), " (k+1),y°(k+2))  (35)

with
g (wo(k), w1 (k), u(k), u(k + 1), y*(k),
yk+1),y"(k+2) =

an (wi(k) +y*(k+1)) +an u(j(:)l) [wq (k)

—~ap (wo(k) + y* (k) + ¥ (k+ 1))
+ag2a12 (wo(k) + ¥ (k) u(k)u(k + 1) +
azarzu(k + 1) — y* (k4 2)

(36)

The sliding surface expression s(k), in terms of the
transformed coordinates, is defined as

s(k) = aowo(k) + wy (k) (37)



We impose on the coordinate s, the following first order
slding dynamics

s+ = (st8))

with the function ¢ as defined in (23) in the previous sec-
tion.

From this last condition we can find an (explicit) expres-
sion for the dynamical feedback controller synthesizing the
required input that drives s to zero in a finite number of
steps.

u(k+1) = u(k) 2

i) (38)

where

(k) = [((s(k)) — arwi(k)-

az (wi(k) +y"(k + 1)) + y" (k +2)]

d(k) = g1 (wi(k) +y"(k +1) = an(wo(k) +y * (k))
“+agsza12 (UJ(](k) + y"(k)) uz(k) + 412201311(‘7‘39)

In order to implement the above controller, the generalized
phase variable w; (k) has to be estimated, while wo(k) =
z3(k) — y* (k) is assumed to be measurable. We could,
thus, propose a reduced order observer for the estimation
of wy(k) in the control law. However, in order not to
unnecessarily cloud the develpments we consider, just for
simplicity, a full order oberver of the form

no(k+1) = nu(k)+ Leo (wo(k) — (k)
mk+1) =
¥z (no(k), mu(k), u(k), u(k + 1), y" (k),
y(k+1),y"(k+2)
+L2ey (wolk) — o (k))
(40)

with the function ¥ as given in (36), but with the new
arguments replacing the original ones.

3.1 Simulation results

Simulations were carried out for the DC motor example
with the following parameters with the following numeri-
cal values for the parameters

R, =3 ;
L,=01 ;L. =01; J=05;

As design parameters for the proposed controller, we
took the corresponding numerical values as

R, =10 ; K=15; F=0001

V, = 150

ap=-07; a=2; r=2; b=15

while for the observer design, the parameters were set to

L=03; ¢=02; ¢,=09

The sampling interval was chosen to be 7 =0.01 5.

As a teference signal, y*, for the state variable z3, we
chose a constant value of 40 rad/s. Figure 2 shows the
state responses of the closed loop output feedback con-
trolled system. The trajectories are seen to converge to
their corresponding equilibrium values. The figure also
shows the behaviour of the control input variable u(k) and
the sliding surface coordinate evolution, s(k), converging
to zero in just two steps. The evolutions of the observation
error vector components are also depicted in this figure.

4 Conclusions

In this article a general output feedback control scheme
has been proposed for the sliding mode regulation and
tracking of nonlinear discrete time systems of general
form. The result parallels a recently introduced output
feedback control scheme for the semi-global stabilization
of nonlinear continuous time systems (see [12]). Aside
from minor technical considerations the scheme can also
be used in discrete-time cases, as shown here.

As an illustrative example, the case of an approximately
discretized model of a nonlinear DC motor, was presented
in the context of an angular velocity tracking problem.
The simulation results of the dynamical output feedback
sliding mode controller were highly encouraging.

5 Figures

Figure 1: Function {
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