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Abstract

The regulation of the non-minimum phase outputs of

a Planar Vertical Take-Off and Ladng (PVTOL) air-

craft, is approached using the dtierential parametriz-

ation provided by the system’s flatness property. The

parametrization allows to establish an open loop rela-

tionship between the regulated outputs equilibria and

the fiat outputs equilibria. An indkect stabilization
of the aircraft’s nonminimum phase center of gravity

position coordinate outputs can then be achieved in

terms of a corresponding trajectory tracldng task for

the differentially flat outputs, represented in th~ case

by the coordinates of an equivalent J3uygens center of

oscillation. A suitable trajectory tracking task is then

specified for the set of flat outputs whkh is solved by

means of a dynamical linearizing state feedback con-

troller.

1 Introduction

The regulation of nonmirimum phase outputs repre-

sents an interesting problem which has received sus-

tained attention in the past. Different regulation

schemes are available from the existing literature. One

of such schemes, whkh seems to be the most popular,

was proposed in Benvenuti et al in [1]. The method

consists in an indirect regulation scheme of the nonmin-

imum phase output by regulating instead a judiciously

chosen minimum phase output. This scheme has been

extensively exploited in the output voltage stabilization

of dc-tedc power converters and also in the angular

position stabilization of flexible joint robotic manip-

ulators (see Sir&Ramfrez and Lischiiky-Arenas [4],
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and Slra-Ramirez et & [3]). A second approach con-

sists in approximating the nonminimum phase system

by means of a minimum phase system ( see Hauser et

d [2] and the references therein). A different scheme

which is based on a piecewise dynamical unstable con-

troller design, combined with the possibdities of con-

troller state resetting, has also been proposed for non-

mtilmum phase systems in the context of power elec-

tronics systems (see Llanes-Santiago and Ska-Ramfrez

[5]).

Difl?erential flatness, introduced in recent articles [6]-

[7], is a far reaching strwctwal system property which

can be related to many feedback controller desgin tech-

niques (backStepping, passivity, dynamical feedback

linearization, etc). Roughly speaking, a multivariable

nonlinear system is flat if there exists a certain vector

of independent functions, called the flat outputs, of the

same dimension as the vector of control inputs, which

are diffenmtiai ji.mctions of the state of the system (i.e.,

these outputs are a function of the state variables and

also of a finite number of their time derivatives), with

the additional property that, every system variable,

i.e., states, original outputs and also the inputs, can, in

turn, be expressed as differential functions of the flat

outputs. Many systems in practise are deferentially

flat (See a recent tutorial on the subject [11]).

PVTOL aircraft systems have been the object of study

by many researchers. The modeling aspects have been

thoroughly treated in an industry report [8] from where

most of the recent theoretical studies have derived.

An exact linearization solution to the VTOL position

transfer problem has been given by Hauser et al in [2]

using an approximation of the nonminimum phase sys-

tem by regaxdhg it to be a slightig nonmininwn phaae
system. The PVTOL aircraft dynamics have been

shown to be diffenwtiallg j%zt in the work of Martin [9].

The regulation aspects of the nonminimum phase out-

puts of the PVTOL aircraft system have been studied
in Martin, Devssia and Paden [10] where flatness is ex-

ploited in a scheme using inverse trajectory feedforward
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in combkation with a state tracker while guaranteeing

a bounded zero dynamics (see also [11]).

In this article, we approach the regulation of the PV-

TOL aircraft center of gravity position coordinates,

which are known to be nonminimum phase outputs

([2]), via an indirect feedback regulation scheme involv-

ing the flat outputs whkh are indeed minimum phase

outputs. The flat outputs, as already shown in [10],

of the PVTOL example are represented by the equiv-

alent of the lluygens center of oscillation coordinates

when the PVTOL aircraft dynamics is regarded as a

virtual pendulum model. Our approach wide also ex-

ploiting flatness differs from those presented in [10],

and [11], in which we base our considerations on the

differential parametrization naturally provided by the

flatness property. Th~ differential parametrization is

sufficiently rich to establish not only importzmt struc-

tural properties of flat systems (see [12]) but SJSO,to

establish the needed open loop static relationships be-

tween the nonminimum phase outputs equilibria and

the flat outputs equilibria. These relationships alIow

us to define an alternative, but equivalent, equilibrium

transfer problem for the PVTOL center of gravity co-

ordhmtes in terms of the minimum phase flat output

vector coordmtes. The required dynamical feedback

controller is then obtained by solving a suitable trajec-

tory trscking problem, with linear tracking error dy-

namics, which is defined in terms of a planned trajec-

tory linking the flat coordinates equilibria involved in

the equilibrium position transfer task.

In se&lon 2 we present the model of the aircraft and

proceed to obtain the dynamical feedback controller

which regulates a transfer of the nonminimum phase

outputs between two given constzmt equilibrium points.

Section 3 presents the simulation results and Section 4

is devoted to present some conclusicms and suggestions

for further research.

2 A Planar Vertical Take-Off and Landing

Aircraft Stabilization Example

2.1 Description of the System

In Hauser et al [2] (see also [10]), the following model is

proposed for the simplified description of the dynam-

ics of a planar vertical take-off and landing (PVTOL)

aircraft (see Figure 1 )

x= –ul sin@ + EU2cos e

2= ~lc0s$+~a2sin@-g

8=U2 (1)

craft’s longitudhml sxis angular rotation as measured

with respect to the fixed horizontal coordinate axis.

The controls U1 and U2 represent normalized quantities

related to the verticzd thrust and the angular rolling

torque applied around the longitudhud axis of the air-

craft respectively. The constant g is the gravity accel-

eration and e is a fixed constant related to the geometry

of the aircraft.

The system outputs x and z are known to be non-

minimum phase. Indeed, if z and z are held constant by

means of a suitable control action, then, in particular,
~ = O ~d z = 0. using the system dynamics (1) one

readily obtains the required control inputs as

UI =gcosf9 ; ‘l@ = 9
- sin (J
E

The correspondh-ig zem dynamics is then represented

by the following autonomous dflerential equation for

the angular position of the aircraft,

(2)

The dynamics (2) exhlblts an unstable (saddle) equi-

librium point a! the origin 0 = O, $ = O and a center

around 0 = n, 6 = O. For initial conditions with zero

angular velocity, the periodic nature of the solutions of

2, imply a “rocking” motion of the aircraft around its

longitudh.a.l axis. For zero initial conditions of the roll

angle and nonzero initial angular velocity, the system

(2) is unstable and hence, as time increases, the air-

craft rotates about its longitudhml sxis while its center

of gravity remains fixed at a constant position in the

Z-Z plane (see Figure 2).

2.2 A transfer problem for the non-minimum

phase outputs

It is desired to transfer, in a finite amount of time

AZ’ > 0, the aircraft position in the Z-Z plane, from

a given fixed initial position, specified by a given set

of constant horizontal and constant vetilcal coordinate

values, % and %, towards a second constant posi-

tion represented by the set of coordinates Zf and Zf

with the angular coordinate @changing from an initial

value ~i. = O towards a final value at = O. In [10] the

same problem is solved by constructing a bounded tra-

jectory for the internal dynamics, represented by the

angular displacement 6, on the bssis of the solutions

of a sequence of linear ordhmry differential equations

with suitable initial conditions. Thk trajectory is in

turn translated into a state space trajectory which is
then tracked in a conventional manner.

where x and z are the horizontal and vertical coordl- 2.3 A differential parametrization of the dy-

nates of the center of gravity of the aircraft, respec- namics

tively measured along an orthonormal set of fixed hori- It has been shown in [10] and also in [11] that the PV-

zontal and vertical coordinates. The angle $ is the air- TOL model is differentially flat, with flat output given
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by the horizontal and vertical coordinates (I’, L) of the

Htiggens center of mwahtion when the aircraft dynam-

ics is re-interpreted as the dynamics of a pendulum of

length c. Such outputs are given by,

F=x– Esinf3 ; L=z+Ecos@ (3)

By considerations related to obtaining a singularity free

structure at infinity of the position coordinate outputs

which coincides with the structure at infinity of the tan-

gent system as well as conditions for a well defined zero

dynamics, it hss been shown in [10] that the PVTOL

aircraft system model requires a second order dynami-

cal extension on the control input U1. Instead of taking

U1 and til as additional state variables, the following
.2

()
auxiliary variable < = U1 – E 6 is introduced as a

new state variable. The following set of relations is

then obtained,

F = x–&sin@

F = x–Eecos6

F –G sin 0
P(3) ~ -{ sin e – d cos 0 (4)

F(4) = –<sin@ – <4cos0 – u2ccos8

–0{ COS$+s (4)2 sinO

It can be shown, after some algebraic manipulations,

{hat all the state variables in the system z,*, z, 2, d,
(?, ~ and<, we expressible as di~erem%al ftmctiom of F

and L, i.e.,

x
= F+’/&

.
x= ‘+’[(92+;+9)2]1’2

+F@)+(~+g)L@)]

- [(~)’+w2]”2
()L+g

z
= L-’/~

L(3)
i = L—e

[(F)2+(~+J]1’2

+@+g) [FF(3)+ (i+f4L(3)l
[(92+P+$12]3’2

()
Pe= arctan-

L+g

(
F(3) ~ + g) – PL@)

e=

(F)’+ F+42
.. 2

G
()=—

(F)2+IL+9)

.. 2

, = ,FF(3)F+9)2-(F) 2F+W3) (,)

[(F)2+(L+f02]2

Letting
J’(4) = VI ; L(4) = ~2 (7)

we obtain the following expressions for the orighml con-

trol inputs WI and uz w well as a second order deferen-

tial equation describhg the states (g,<), corresponding

to the second order extension of the control input vari-

able U1,

()
2

U1 = <+C e

1
u2=-

(
–vl cos 0 – V2 sine – 2<4

c )
.2

<= ()
–vlsin 0+v2cos O+< 9

2.3.1 A static relationship between

equilibria: The differential parametrization (6)

(8)

the

and

th~ expressions (7) and (8) allow us to obtain a static

open loop relationship linking the nonminimun phase

planar position coordinates equilibria to the corre-

sponding flat outputs equilibria. Indeed, letting z =
?E=ccmstant, %=%=-..= omclz=z=~stant,
$=%=... =Owith8= ~=~=... =0 in the

previous expressions, one retilly obtains,

F=?t z = Z+e
~

%=0 L =0

3 =0 % = c–g (9)

J’(3) = O L(3) = ~

F(4) = _~2~ L(4) = ~

Letting ~ = Oyields c = g ad then; = ~ = 0. In other
words ~3) =

~4) = O. As a consequence, % = O.7
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Letting, on the other hand, $’(4J = Oone obtains WI = O

and w = O. From the above expressions one also has,

l’il = F = g and the equilibrium values of zdl system

variables is, therefore, completely determined.

2.4 An indirect non-minimum phase output

equilibria transfer in terms of a corresponding

transfer of the flat outputs

The control objective of regulating the outputs z and z

from given constant equilibrium values Z(T1 ) = Zin and

z (l’l) = ?&, towards a given second equilibrium value

x(Tz) = Zf and z (T2 ) = Zf, in a prespecified amount

of time AT = Tz – T1 > 0, can be now translated

into a corresponding transfer of the minimum phase

flat outputs F and L from the initial equilibrium val-

UW F(T1) = ~~n = Z~n and L(T1) = L~n = Z~n + E

towards the fi@.1 equilibrium value 17(T’z) = ~f = Zf

and L(Tz) = Lf = zf + e.

2.S Trajectory planning

A set of open loop trajectories F* (t) and L* (t) for the

flat outputs F and L, tileving a transfer between

two equilibrium points (~~m, ~ifi) and (~f, ~f), may

be specified in terms of suitable polynomizd splines, as

follows,

F“(t) = ~in + ~(t, T1, T2)(27f – ~in)

L“(t) = & + ~(t, TI, T2)(1f – ~i~) (lo)

where #(t, to, T) is a polynomial function satisfying,

@(Tl, T1, T2) = O and qJ(T2, Tl, T2) = 1 with a sufficient

number of time derivatives being zero at time TI and

at time T2, thus guaranteeing suiliciently smooth depar-

tures and arrivals. As an example @(t, TI, T2) may be

specified as,

~(t,TI, 2“) =
k52(%)5-1050(%)6

+Noo(l#)7.1575(g)8

‘700(=?’-12’(=)101
(11)

This particular choice of trajectories for the flat out-

puts F and L, guarantees that at time T1, the fist

four time derivatives of F* (i?) and L*(t) me all zero,

while at time Tz the first five time derivatives of the

planned flat outputs are also zero, thu s avoiding no-

ticeable dlscontinuities in the dynamically generated

control inputs UI and uz ss well as on the auxiliary

inputs VI and u2.

2.6 A state feedback controller for the PVTOL

aircraft system

One proceeds to impose on the flat output tracking

errors e~(t) = F – F“(t) and eL(t) = L – L“(t) the

following asymptotically stable behaviors,

e:) (t) + a3e~) (t) + a#F(t) + al&F(t) + me~(t) = O

e~) (t) + bae$) (t) -i- the~ (t) + bl& (t) + boe~(t) = O

(12)

where the sets of coefficients {U3, UZ, al, a.} and

{b3, bz, bl, 6.} are chosen so that the corresponding

polynomials in the complex variable s,

plz.(s) = $4 +a383 +a2s2 +als+a’

PL(S) = S4 + b3s3 + b2s2 + bls -t bo (13)

are both Em& polynomials, i.e., with all their roots

having strictly negative real parts.

The specification of the tracking errors dynamics (12)

results in the following feedback controller explicitly

based on the open loop specification of the flat outputs,

F(4) = F*(4) (t)+ ~3 (F(3) (t) – F*(3) (t))

+02 (F(t) - ~(t)) + q (F(t) – P(t))

+ao (F(t) – F* (t))

F*(4) (t) + U3 (–i sin6 – <4 COSO– F*(3) (t)

+a2 (-gsin(0) -~(t))

)

+al (&– eecose - P(t))

+ao (z – esinfl – F“(t))

L(4) = L*(4)(t)+ b, (L(3)(t) - L*(3) (t))

+bz (~(t) – J?@ + bl (~(t) – ti(t)) +

bo (L(t) – L“(t))

L*(4) (t) + b~ (f ~os(@) – <e sin(o) – L*(3) (t))

+bz (WX@) - g - ~(t))

+bl (i + edsind - ~(t))

+bo(z+ecosd-L*(t))

(14)

3 Simulation results

Using the multivariable state feedback control scheme

(14), a maneuver transferring the PVTOL aircraft cen-

ter of mass outputs (z, z) from a given initial equilib-

rium position towards a prescribed second equilibrium

position was performed. The initial equilibrium point

wa8 set at (3%, Zin ) = (O, O) while the semnd equi-

librium position for the center of mass was set to be

located at (Zf, Zf) = (1, 1).

The maneuver was set to smoothly begin at T1 = 6 time

units, and it waa prescribed to be completed at Tz = 14
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time units. The simulation results shown in Figure 3
correspond to the following set of system (normalized)

psxameter values,

C= (3.5 ; g=l

The controller design parameters were chosen so that

the polynomials pF (s) and pL (s) each had four rOOts

located at the point -2 + Oj in the real axis of the

complex plane, i.e,

a3=8 ; a2 =24 ; al =32

b3=8 ; b2 =24 ; bl =32

4 Conclusions

; ao =16

; %=16

The regulation of nonminimum phase system outputs

between prescribed constant equilibria is usually tack-

led by resorting to an indhect control scheme whereby

a minimum phase output is commanded to stably con-

verge towards an equilibrium point uniquely rdated

(i.e., parametrized) to the corresponding required

equilibrium of the nonminimum phase output.

The control scheme presented in this article relies on

the differential flatness of the given system. The flat

outputs are indeed nonminimum phase outputs in the

sense that they exhibit no zero dynamics whatsoever.

The differential parametrization of all system state,

output and control variables in terms of the flat outputs

usually provides the key element to be exploited re-

gadng all relevant static aspects of the required equi-

librium parameterization in terms of the corresponding

equiEbrium transfer problem.

Several other problems can ahw be explored using sim-

ilar idess to the ones presented here. Particularly im-

portant is the trajectory trscking problem for nonmi&

mum phase systems. The problem of predictive control

is closely related to such a program and, also, the gain

scheduling problem can benefit from the fact that for

difbrentially flat systems the differential parametriza-

tion contains all relevant information about the system.

References

[1] L. Benvenuti, M. D. di Benedetto, and J. W.

Grizzle, “Approximate output trscldng for nonhear

non-minimum phase systems with applications to flight

control” Report CGR-92-20, Michigan Control Group

Reports, University of Michigan, Ann Arbor Mlehigan,

USA, 1992.

[2] J. S. Hauser, S. Sastry, and G. Meyer, “Non.hn-

ear control design for slightly nonminimum phsse sys-

tems: Application to v/stol aircraft” Automatic% Vol.

28, 1992, pp. 665-679.

[3] H. Siia-ltamfrez, S. Ahmad, and M. Zribi, “Dy-

namical Feedback Control of Robotic Manipulators

with Joint FIexibllity: IEEE ITansactiom on S&stems

Man and Cybernetics. Vol. 22, No. 4, July/August

1992, pp. 736-747.

[4] H. Sirs-Ramirez, and P. Lischinsky-Arenag, “

The Differential Algebraic Approach in Nonlinear Dy-

namical Compensator Design for DC-to-DC Power

Converters, “ International J. of C70m$d, Vol. 54, No.
1, July 1991, pp. 111-134.

[5] O. Llanes-Santiago, and H. Sirs-%mirez, “A

Controller Resetting Strategy for the Stabdization of

DC-to-DC Power Converters towards Nonmini.mum

Phase Equilibria”, Pmceekgs of the $’3d IEEE Con-

fenmce on Decision and Cordrol, L&e Buena-Vista,

F1orida USA, December 1994. pp. 2920-2925.

[6] M. Fliess, J. L4vine, P. Martin and P. 130uchon,

“Flatness and deikct of nonlinear systems introduc-

tory theory and examples? Internat. J. Control, Vol.

61, 1995, pp. 1327-1361.

[7] M. Fliess, J. L&ine, P. Martin and P. Rouchon,

“Design of trajectory stabilizing feedback for driiless

flat systems? Proceedings of the 3“d Ewopean Control

Conference, pp. 1882-1887, Rome, 1995.

[8] McDonnell Ahxraft Company, “YAV-8V Simula-

tion and Modelling”. McDonnelI Douglas Corporation

Report. 1982.

[9] Ph. Martin, “Contribution ti l’~tude des Syst4mes

Diff6rentiellement Plats” PhD thesis, Ecole des Mines

de Paris, France.

[10] Ph. Martin, S. Devasia, and B. Paden, “A differ-

ent look at output tracking Control of a VTOL air-

craft” Automatic, Vol. 32, No. 1, 1996, pp. 101-107.

[11] Ph. Martin, R. Murray, and P. Rouchon, “Flat

systems” Plenary Lectures and Mticourses of the 1997

Europeam Control Conference, Chapter 8, pp. 211-264,

G. Bastin and M. Gevers (Eds.) 1997

[12] M. Fliess, H. Sirs-Ramfrez and R. MArquez,

“Regulation of nonminimum-phase outputs: A flat-

ness based approach” in Perspectives in Control D.

Normand-Cyrot (Ed.), Springer-Verlag, 1998.

Proceedings of teh 37th IEEE Conference on Decision & Control • Tampa, Florida USA • December 1998 FM15-6  12:30

0-7803-4394-8/98 $10.00 (c) 1998 IEEE 4226

Proceedings on the 37th IEEE Conference on Decision & Control • Tampa, Florida USA • December 1998



[-----*:-

1

1

of x

Figure 1: Planar Vertical TzkKM and Landing Awcraft
System.

Figure 3: State variables, control inputs and flat outputs
in a position transfer maneuver for a PVTOL
example.

Figure 2: Unstable nature of the zero dynamics (e= 0.5,
g = 1).
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