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Abstract

In thw article a general canonical form is proposed for a
clam of delay differential systems whkh explicitly iden-
tifies the conservative, the d~sipative and the locally
destabilizing forces in the uncontrolled delayed drift
vector field. The proposed canonical form is helpful
in the design of passivity based controllers. A design
example is presented along with computer simulations.
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1 Introduction

In thk article we propose an extension of the canonical
form derived in [2], for a class of nonlinear delay dHler-
ential systems, which clearly exhlblts the dksipative,
the conservative and the destabilizing forces acting on
the system dynamics. A simple input coordhmte trans-
formation whkh respects the beneficial nonlinesrities
is shown to make the system output passive and ready
for a direct application of the “energy shapping plus
damping injection” method.

2 Basic result

Consider the following delay differential system, with
fixed delay r, given by

x= f(z, Z(t – T)) + g(x)u

‘# = h(x) (2.1)

where xEXCR”, uGZICR, r> Oandye YC.W.

It is assumedthatfor a constantcontrolinput,u = U,
the system exhib%s a nonzero conekmt state equilib-
rium vector 3?. The system is supposed to operate on
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an open region of the state space, X, where the equi-
librium points are found.

Let V(S) be a positive definite, C1 storage func-
tion. W/8S is the gradent of V as a column vec-
tor. The transversalitg conditionL9V(z) = &g(x) #
OVXE X is assumed to hold valid in all of
X, Notice that if the traxunwrsality condition is not
satisfied, the following shapping of the storage func-
tion does satisfy the transversaMy condition, W(Z) =

V($)+@ (L;-’V(Z))2 ; ,0>0 where r is the relative

degree of V(z) with respect to the input u in all of X.

Proposition 2.1 Let 5 denote the composite vector
(s*(t), z~(t – T))~. The sgstem (2.1] can always be
rem”tten, after afine feedback of the form u = ~(%) +
e(%}v, as

- m’”x= 3(5) g + s.(d~ + y(x)v

g = #(2g (2.2)

where Y(Z) is a skew sgmmetric matriq and S.(5)
is either a negative semidefinite or a negative definite
matrix

Proof The proof is based on a decomposition of the
delayed vector field ~(it) into two components. The
first component of ~(~) is represented by its pro@c-
tion onto the tangent space, at x, of the con$tant ievel
sets of V(x), along the span of the wntral inp%t vec-
tor field g(x). The second component is just the dif-
ference between the delayed vector field $(5) and the
previously defined projection. The secondcomponent
evidently belongs to the span of 9 (~). (For further de-
tails see Sirs-Ramirez and Angul&Nfiiiez [2]). Once
the delayed drii vector field is decomposed, the locally
unstable components of the resulting symmetric matrix
S(5) are netitdzxzi by means of feedback
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3 A Feedback Controller Design Example

Consider the following second-order system

0.721(i?– T)
il = x2—

@+z; @-T)

kz = ().7@ (t–~)–%l+u

3=X2 (3.1)

The regulated output y = X2 is evidently a relative
degree one variable which is also minimum phase, as it
can be easily demonstrated.

Consider as the energy storage function V(z) the
quadratic form V(z) = $ (z?+ z:). The transver-
sality condition, L$V(z) # O, results, in this case,
in L9V(Z) = X2. The region of singularity for the
transversfllty condition is then represented by the xl
axis in the Z1-Z2 plane. The required equilibrium trans-
fws or the tracking of signals must then be such that
the xl axis is never crossed. We assume that the oper-
ating region is constituted by the first quadrant in the
x1-x2 plane.

The system may be rewritten in the form (2.2):

where

[+

o 1 0.3631(t–T-—

$(2) =
2 m l+z;(&–7)

0.35%1($–T 1—.
aJ2 I+Z;(t-r) 2 ‘1

[r-$--J-
0s(k)= , $;:&l+z;(t–T)

0.35zI t–T o._—
2 X2 I+ Z;(t–T) =2 1

[1og(z) = ~

Define the neutralizing state-dependent input coordi-
nate transformation

~ = 0.7%1(t – 7)$1
– o.7z2(t – T) -1-‘u

%z/l+z; (t– T)
(3.3)

Transformation (3.3) results in a passive system ope-
rator relating the new input v and the output variable
X2.

3.1 Passivity-based feedback controller design
A dynamical passivity-based feedback controller may
be obtained for the system by using the “energy shap-
ping plus damping injection” design methodology (see
[1].

( = ~2–
0.7X1(t – T)52

Z2/l+Xf(t– T)
+ a (% – f)

t-
0.7ZI (t – 7)$

v = – R2 (x2 –22)
2@+z; ($-T)

The required eqtilbrium point for X2 was set to be
it2 = 0.5, this corresponds with the steady state values:
51 = 1.02 and z = 0.67. The delay T was supposed to
be T = 5. The starting function for the delayed vari-
ables initial condition was set to be zero in the interval
[–5.0] (See Figure 1)

4 Conclusions

A canonical form has been proposed for a class of delay
differential systems whkh clearly exMblts the conserva-
tive, the dksipative and the locally destabilizing forces
of the drift vector field. The canonical form is useful in
identi~lng the beneficial nonlinearities that should be
respected in an input coordinate transformation geared
to make the system f~dbwk passive. The partially
closed loop system is readily suitable for a direct ap-
plication of the popular “energy shapping + damping
injection” controller design methodology. A controller
design example was presented for a two dimensional
nonlinear delayed system, along with computer simu-
lations.
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Figure 1: Simulation results of the psssivity-based regu-
lated nordinesr system with delay.
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