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Abstract

In this article, we present a criteria to design the switching

control sequence for a nonlinear system in a normal form

when the control input lives in a finite set. The criteria

is based on the minimization of a Lyapunov function and

the concept of oatpzit regulated subspaces ORS recently pre-

sented in [2]. Moreover, we propose to modify the controller

by adding a passivity based algorithm in order to improve

the transient behavior and reduce the control effort. The

technique is applied to the well known three phase Boost

type rectifier for which simulations results are provided in

order to show the improvement in the transient response.

Results are compared with the controller based in sliding

mode approach reported in [7].

1 Introduction

In many processes the controllers are restricted to live in fi-

nite sets. This is the case in most of the circuits in the field

of power electronics, where the control input is normally

a binary signal to be introduced in the gate of a thyristor

acting as a switch. Classical examples of these systems are

the DC–DC converters, AC–DC converters better known

as rectifiers, DC–AC converters more frequently referred

as inverters, among others. The control solution for such

systems is normally based in the concept of pulse with mod-

ulation P WM, even though also some controllers have been

proposed that use the sliding mode approach.

In this paper we present a methodology to design the

switching control sequence for systems in the normal form

when the control input is restricted to live in a finite set.

Vital in our approach is the concept of equivalent control

U,q which is a continuous signal such that, applied to the

system in steady state, restricts its trajectories to a desired

manifold. since the control input is restricted to live in a

finite set, we use the concept of output regulated subspaces

ORS introduced in [2] and a Lyapunov based criteria in

order to implement the swit thing control sequence. More-

over, energy shaping PIUS damping injection ESDI stages

are added to the original controller which results in an im-

proved transient response of the system with a decrease in

the control effort. The closed loop system belongs to the

class of hybrid systems since it contains signals of different

nature, continuous and discontinuous, where the last is due

1This research was supported by the Consejo National de
Giencia y Tecnologia de M6xico (CONACYT)

to the fact that the controller lives in a finite set. The tech-

nique is applied to the well known three phase boost based

rectifier and simulations results are provided that shown

the advantages of our approach. By defining a reference

signal tracking problem on the input currents of the con-

verter, the power factor can be made very close to unity as

long as the tracked signal is in phase with the rectified in-

put voltages. The load voltage DC component is explicitly

computed in steady state in order to approximately deter-

mine, via a partial system inversion, the required reference

signal amplitude for the input currents.

This work was motivated by the seminal paper [6] where

the problem of output voltage regulation in the three phase

rectifier is formulated and some guidelines are given to im-

plement a controller based on the definition of subspaces

in the control input space. Later in [7] they presented an

approach based on the concept of sliding modes and the

computation of the equivalent control. They propose to di-

vide the input space into four quadrants according to the

different signs of the sliding surfaces. Then, they select the

control vector that is contained in the good quadrant, i.e.,

the one that fulfills a sliding criteria. Special attention is

given to the case where no vectors or more than one are

contained in such quadrant, in such case, they propose to

select the nearest control vector to the equivalent control.

2 Problem formulation

Consider an n-dimensional nonlinear system of the form

k= f(x) + 9(x)~

Y = h(x) (2.1)

where x G A! denotes sufficiently large open subset of Et”,

yEIRwand uE~={Ul, &,..., UN} C~m, NGZ;X

is addressed here as the operating region of the system that

contains the system trajectories. The vector field f(x) is

such that f(0) = O, i.e., the origin is a zero input equilib-

rium point for the system. The output map h : Illn + lR~,

satisfies h(0) = O. We need the following assumptions.

Assumption A.1 The output function h(x) of system (2.1)

has vector relative degree equals {1, 1, . . . . . 1}, i.e., the direc-

tional derivative, Lgh(s), is bounded away from zero in the

operating region of the system.

Assumption A.2 The system is input-to–state-stable

(1SS). That is, given a locally C’ function of time, y*(t),
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the system is assumed to be stable when the regulated out-

put g(t)is locally tracking the signal ~“ (t).In other words,

the associated zero dynamics of the system, consistent with

the time varying constraint g = g“ (t),is stable.

Normal form. If the system is relative degree one in Z and

the distribution span{gl, gz, . . . . g~ } is involutive around the

equilibrium point then, there exists an invertible state co-

ordinate transformation in X (see [3])

(z, g)= (T(z), h(z)) (2.2)

which locally takes the system into the following normal

form given by

i = q(z, y)

i = a(z, Y) + b(z, y)zf (2.3)

where z G IRn-m, a(z, Y) = L!h(z>?J) ad ~(z> ?I) =
LJz(z, y) is a full rank matrix in X called the decoupling

matrix [3]. Note that from the assumptions on f(x) and

the diffeomorphic nature of the transformation, it follows

that q(O, O) = O and a(O, O) = O. Also, the 1SS assumption

implies that the system 2 = g(z, y*(t)) is a stable system.

Assumption A.3 The system (2.3) can be passified with

respect to some Cl positive definite storage function V(z, y)

by specifying an appropriate regular static state feedback

u = CI(Z, ~) + P(z, ~)v. Thus, without loss of generality, we

assume that system systgral and therefore systnormal are

two different versions of an already passive system.

Assumption A.4 The function V(z, y) can always be cho-

sen to be zero at the origin of coordinates (z, y) = (O, O)

moreover its gradient components tW/i2z and W/8y of

the storage function only vanish identically at the origin

(z, g)= (0,0).

Control objective. Consider a m-dimensional time vary-

ing reference signal y*(t), and define the tracking error sig-

nal as e = y(t) — y*(t). Then the control objective con-

sists of designing the switching sequence of control vectors

u G U such that the error e ~ O as t + co, i.e., tracking

is ensured (as close as possible) maintaining all the internal

signals bounded.

3 Output regulation subspaces

In this section we recall the output regulation subspaces ORS

aa they were defined in [2], i.e., the subspaces of the input

space Etm where each y; = O. They are defined by

where J+ JT=O, ci~IR andi=l,2, . . ..m.

The ORS define hyperplanes with the characteristic that

points “above” the i-th hyperplane yield ~; > 0 while

for those “below” we have tii < 0. See Fig. 1. More-

over, the slope of those hyperplanes is given by the rows

of the matrix b, (z, y) and the intersection point is given by

U2

+

$>0 y,>0
y,<o y,>o

j, =C)

j <0 j<o ‘1
+2<0 j,>o

j12=cl

Figure 1: Output regulation subspaces in IR2

From relative degree assumption A. 1 we have that the OSR

will not be parallel, thus inducing a partition of the input

space in function of the signs of J,. This gives us the capac-

ity to increase or decrease a particular output by selecting

a control vector above (below) the corresponding ORS.

4 Basic controller design

In this section the basic controller hybrid strategy is pre-

sent ed. Consider the error model as given by equations

2= q(z, y)

6= a(z, y) – Y* + b(z, y)u (4.4)

The method proceeds to solve for the feedback control u

from the last equation. This feedback controller is referred

as the equivalent control

u., = -b-’ (z, y)(a(z, y) - j“) (4.5)

the controller so obtained represents a virtual feedback con-

trol action that, in the absence of perturbations and mod-

eling errors, ideally keeps the system responses evolving on

a manifold represented by the condition e = O.

Nevertheless for the class of systems studied here, the

controller is only allowed to take values in a discrete set

u = {Ul, U2, .-., UN]. So efforts will be done in order to ob-

tain a discontinuous feedback control solution of the track-

ing problem proposed on the original system.

Let us propose the (partial) Lyapunov function V = ~ez.

Its time derivative along the trajectories of (4.4) can be

expressed in terms of U.q as

V = eTE = eTb(z, y)(u - U.q) (4.6)

So now the problem is translat~d into the selection of a vec-

tor u G U in such a way that V is render negative definite.

In the case of the tracking problem the ORS can be rein-

terpreted in the following way. The ORS is now defined for

6,, i.e., 0SR(6, ). Moreover the ORS can be rewritten in

terms of the equivalent control as follows

ORS(&) = {u = u.~ + d%(z, !/)} (4.7)

Fig. 2 shows graphically this reinterpretation of ORSfor the

tracking problem, considering the equivalent control con-

cept.
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U2
,

Figure 2: Output regulation subspaces for 4 in IR2

Proposed strategy. We propose to select the control vec-

tor according to the following three steps strategy.

S.1 We select the control vector u that makes negatives

‘ (z’= 1, . . ..m). that is,simultaneously all the products e! et,

S.2 If 1 (1 <1 ~ N) control vectors fulfill this condition,,

then we select among them, the nearest U, to u~~, that is,

t4=U;
{

i = arg ,etll,,} 1(U, - U.q)l
}

S.3 Finally, if no vector fulfills the condition, then we select

the one that minimizes V, that is,

U=u,
{

i=arg min ti(X, t, Uk)
kC{l,...,N} }

with this at least one of the errors et is being minimized if

the equivalent control doesn’t leave the convex hull formed

by the control vectors in the fkite set U = {UI, U2, . . . . UN}.

Moreover, if the equivalent controller doesn’t escape from

the convex hull then there is always a switching sequence

that makes V <0. Moreover the manifold e = O is reached

in a finite time, and under assumption of fast switching, the

trajectories stay all the time in that manifold.

5 The energy shaping plus damping injection

method

In order to improve the transient response of the system,

and to try to reduce the control effort (at least in an average

way), we propose to add the ESDI technique to the basic

controller proposed above.

i= q(z, y)

O = a(z, y) + b(z, g)u (5.8)

with q(z, g), a(z, g), b(z, g) given as before, z c Eln-m and

g G Ill.’”.

Let (Zd, l/d), with Zd E IRn-m and gd 6 JRm, represent the
state components of an auxiliary dynamical system yet to

be specified. Furthermore, let the vector (~, q) be defined

as the error vector, (f, q) = (z —zd, g —~d). Let also R= Ud

Rv stand for a constant, symmetric (n – m) x (n – m) and

(m) x (m) matrices, respectively, such that the composite

matrix

is positive definite in IRn.

In general terms, the ESDI controller design technique is

based on the consideration of the following auriliarg dg-

nmniccd system

V=?–/ -&/d

W(g, q)
!)d = +,!/) – ~(<,q) +~(z, 9)~ +Ry

aq ~=z–zd

Q= Y– ?/d

The ESDI method proceeds to set the value of the auxil-

iary variable gd, in the last differential equation of (5.9),

to a desired time varying scalar function g$ (t).Once the

particularization, gal(t) = g:(t), has been carried out in

both equations (5.9), the method proceeds to solve for the

feedback control input u, referred as the equivalent control,

from the last equation in (5.9) and to regard the zero dy-

namics, corresponding to the restriction Yd(t) = Y:(t), as a

dynamical feedback controller state equation.

For implementation of this controller as a discontinuous

strategy, the ESDI solution method, previously revisited,

has to be reinterpreted. First of all, the state yd is not dir-

ectly set to g; but it will be forced to follow the desired

signal gj by means of a discontinuous controller strategy

quite similar to the previously studied. This strategy should

ensure that Yci reaches y; in a finite time and once the mau-

ifold e = e = O is reached it will stay there for all the time,

with e = yd - y:.

We proceed to rewrite the auxiliary system equations in

new coordinates (Zd, e) as follows

id = g(%, g) – q(Z – Zd, g – e – g:)

~=g–e–g~

i= –Y3+ a(z, y) – c4(z– zd, y – e – d)

+b(z, Y)u + Rv
W(f, r))

al
$ = ~ _zd (5.10)

‘ q=y–e–y~

In the context of the ESDI controller design methodology,

the equivalent control corresponding to the condition G =

?jd - j*(t) = O can be computed from the last equation in

(5.10) as

‘&q(Z, Y, Zd, e,Yj) = b(z, y)-l [j; – ‘(Z! y) +

W(g, q)
+.(. –.. Y2). –Y2)–12V

ar) ~= Z-Zd

~=y–e-gj 1
(5.11)
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Rewriting the error dynamics in terms of Ueq by using

(5.11) one readily obtains

6 = b(z, g) [24– ?Jeq(z, ?J,a,etd)] (5.12)

Taking the (partial) Lyapunov f~ction candidate V(e) =

~e2 we obtain upon evaluating V(e) along the trajectories

of the regulated surface coordinate function e

V(e) = e~; = e~b(z, g) [u – ~~q(z,y, Zd, % Y;)] (5.13)

It is evident that the same discontinuous strategy discused

before can be applied here with the only considerations that

the definition of the tracking error e and the computation

of the equivalent control have changed.

6 Application to the three phase Boost type

rectifier

Mathematical model. Consider the three phase Boost

type rectifier shown in Fig. 3.

10

<%341-
a,

-l] &J &
Y (0 +Lri,
‘k

‘z(t) L ~
i 1

C+R+
%+

T

Vc
W) +Lr i3
AI

J “ J iJ z
I L L L I

Figure 3: Circuit schematic of a three phase Boost type

rectifier

Assume that the system is balanced, i.e., the voltage and

current source signals have the same amplitudes but are

displaced ;T rad one with respect to the other and the

passive elements on each line have the same values.

Also assume that the vector of source line voltages is com-

posed by purely sinusoidal signals, i.e.,

[1[
vi v Cos(wt)

fJ2 = v Cos(wt – :?r)

V3 v Cos(wt – &r) 1
where V is the amplitude of the voltage signal in ~olts]

and w its frequency in [rad/see].

By neglecting the parasitic inductance resistance rL and

considering the output load curren 10 is due to an output

load resistance, and after a Btondei-Parlcs-transformation,

the model of this circuit, i.e., the cr&Model is given by

where [z., ip] T is the vector of line or induct ante currents;

vc is the output capacitor voltage; [v~, VP]T is the vector

of the source line voltages; [u~, ~p]T is the vector of control

inputs taking values in the discrete set described in table 1;

L is the inductance filter

the output capacitor.

Line source voltages [w.,

1--1

at the line source inputs and C is

VP]T take now the values

Table 1 resumes the transformation of the control input

vectors. The vectors Uae = [u~, U@]*, form the commonly

called input space which in this specific problem can be

drawn on a plane as shown in figure 4.

NO. I ’51 6’2 63 I Ua up
.-

Ui

U2
U3
U4

U5
us
u,

1 –1 –1

11–1

–1 1 –1

–111

–1 –1 1

–1 –1 1
111

Table 1: Permitted switch positions in the a/3-model

, u~

/,.,..+,?
/

\:,. U1\.,f,.<.,,..\...\

@

Figure 4: Input space

Control Objective. The control objective consists into

design the switching sequence of control vectors u~p to drive

the output capacitor voltage UC, of the system modeled by

equations (6. 14), to a desired constant value given by vd,

maintaining all the internal signals bounded. An important

constraint in the design is that the input control vector u~p

can only take the elements Ui (z’ c {1, . . . . 7}) from the table

1. Moreover the current signals ia and id should folIow

sinusoidal functions in phase with the source line voltages

v. and VP, respectively, in order to ensure a near the ~ty

power factor functioning.

The sinusoidal signals are computed from the steady state

analysis, and its amplitude should take a value that en-

sures simuk aneously the regulation of the output voltage

uc towards the desired value Vd. In this case they take the
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following values

Considering the change of variables w = Z., Y2 = Z~, z =
~i~ + ~i~ + $w~, the model (6.14) is written in the norma~

form

6= q(z, y)

Y = a(z, g) + b(z, y)u

where y = [yl, Y2], a = [~~ ~@]T,

L 2
9(%, 9) = ?/T%e – ~(?/TY) – ~z, a(z, ?4) = [% vp]T,

(6.16)
~*---------

@

Figure 5: Input space, output regulation subspaces OSR

. . Proposition 6.3 Existence of a switching sequence under

Proposition 6.1 The system is

{1, 1} if the current signals za, ip

puts.

L 1

vector relative degree

are considered as out-

Proof: This can be easily proved since the clecoupling mat-

rix b(z, g) in the expression (6.16) is a full rank matrix.

Ilnu

Proposition 6.2 The system is minimum phase with re-

spect to output y (the inductor currents i~p), i.e., given a

function of time y*(t) 6 C1, the associated zero dynamics

of the system, consistent with the time varying constraint

g(t) = y“(t) is stable. In other words, the system is stable

when the regulated output ~(t) is forced to track the signai

y*(t).

As was done in previous section, to solve the tracking prob-

lem, we propose to define the tracking error e = [el ez]T =

[(!./1 - !J) (Y2 - Y;)].

The equivalent control is computed from equations (4.5),

(6.1.6), this gives

2

[

d .*
Z&q = —; —vap + L—za@

dt 1
(6.17)

Output regulation subspaces. The ORS in case of rec-

tifier with c1, cz 6 lR+, are given as follows,

ORS(&) = {u= u.., – ;Vcf[l O]T

ORS(62) = {u= up,, - ;VG3[0 l]T (6.18)

The ORS define in this case two hyperplanes which divide

the input space into four quadrants. In this case the ORS is

easily obtained and composed by a vertical and horizontal
lines perpendicular to each other. To each subspace it is

assigned a combination of signs for e1 and & as shown in

figure 5.

fast switching assumption is guaranteed whenever the equiv-

alent controI vector is contained in the hexagon formed by

the points U;, i G {1, . ...6} in figure 4. A more conserva-

tive condition is that the equivalent control vector should be

contained in the inscrit circle to the hexagon, this yields the

following condition

v’=%T- (6.19)

Condition (6. 19) reveals the amplification characteristic of

the Boost rectifier, which for the steady state gives approx-

imately, WV < Vd.

Energy shaping plus damping injection approach.

The auxiliary system for this system is given by

[ 1[
LOO &
oLO @2
Ooc ~t3 [

o
10

0 –u.

1[ 1

&
=—

2
0 –up [2

Wa ~s -$ [3

[1[

Va

+ zJ@ +

o ! i2 LLI[12!J‘620where&,&,&areth:auxi~wsystemstate
RI, RZ, Rs c IR+ are design parameters used to introduce
damping.

Let us define the tracking error e as

e = ~~a – y* = [e~ ea]T = [((l – y;) (& – yj)]T (6.21)

The equivalent control is computed as follows

In the steady state, the existence condition for a switch-

ing sequence is reduced to the same condition proposed in

(6.19).

The ORS are exactly the same as those given in 6.18, with

the only consideration that u~q and the error vector e are

computed now as in (6.22) and (6.21]. So the implementa-

tion of the discontinuous strategy is performed in a similar

way.
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7 Simulation results

The two implementation strategies for the switching se-

quence discused before were applied to the rectifier system.

Moreover, in order to see the improvement in the transient

behavior also the strategy proposed in [7] was implemented,

we will refer to this as st rat eg y (1), we then propose to

add to this simple strategy the ESDI procedure which is re-

ferred as strategy (z). The first strategy proposed in this

paper is referred as strategy (3), while the strategy incor-

porating ESDI procedure is called strategy (4). Notice

that both strategies require as inputs the equivalent control

vector ueq and the error vector definition e = [el, eQ]T.

The simulations were carried out using the actual nonlinear

system model (6. 14), with the parameters L = 10,u H,LOO =

120rrad/see, CO = lmF, V = 110~ R = 25fl, vd =

300V, RI = 2, RQ = 2, R3 = 1.

Fig. 6 shows the phase plots ip(ie), for the four control

strategies. This figure exhibits the improvement in the tran-

sitory state of the current signals. Here, the strategy (4),

i.e., the one incorporating simultaneously passivity and the

proposed criteria to select the control vector, exhibits the

best transient behavior.

Figure 6: Phase plots ip (i~)

Fig. 7 shows the phase plots of the equivalent control signals

for the four strategies studied. This plot exhibits the lower

control effort required in strategies using passivity based

control.

In l?ig. 8 the time response of the output capacitor voltage

is presented. This signal reaches the desired final value

vd = 300 Volts in the steady state. From this figure, the

nonminimum phase behavior of the system response can be

observed.
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